QUÍMICA APLICADA CLAVE: LII 211 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "QUÍMICA APLICADA CLAVE: LII 211 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO"

Transcripción

1 QUÍMICA APLICADA CLAVE: LII 211 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1

2 1. MATERIA. ESTRUCTURA Y PERIODICIDAD 1.1. Materia: estructura, composición, estados de agregación y clasificación por propiedades Sustancias puras: elementos y compuestos Dispersiones o mezclas Caracterización de los estados de agregación: sólido cristalino, líquido, sólido, vítreo Cambios de estado Clasificación de las sustancias naturales por semejanzas Base experimental de la teoría cuántica y estructura atómica Radiación de cuerpo negro Teoría atómica de Bohr Estructura atómica Principio de dualidad Principio de incertidumbre Función de onda Principio de Afbau Principio de exclusión de Pauli Configuraciones electrónicas Regla de Hund 1.2. Periodicidad química Desarrollo de la tabla periódica moderna Clasificación periódica de los elementos Propiedades atómicas y variaciones periódicas: carga nuclear efectiva, radio atómico, radio iónico, energía de ionización, afinidad electrónica, electronegatividad Propiedades químicas y su variación periódica: tendencias generales y por grupo 1.3. Elementos de importancia económica, industrial y ambiental en la región o en el país 2. ENLACES QUÍMICOS Y EL ESTADO SÓLIDO (CRISTALINO) 2.1. Introducción Conceptos de enlace químico Clasificación de los enlaces químicos 2.2. Símbolos de Lewis y regla del octeto 2.3. Enlace iónico Elementos que forman compuestos iónicos Propiedades físicas de compuestos iónicos 2.4. Enlace covalente Comparación entre las propiedades de los compuestos iónicos y covalentes Fuerza del enlace covalente Geometrías moleculares RPECV Enlaces covalentes y traslape de orbitales Orbitales híbridos Momentos dipolares Enlaces múltiples 2.5. Enlace metálico y elementos semiconductores Teoría de bandas 2

3 Clasificación en bases a su conductividad eléctrica 2.6. Fuerzas intermoleculares y propiedades físicas Van der Waals: dipolo-dipolo, London, puente de ph Influencia de las fuerzas intermoleculares en las propiedades físicas 2.7. Estructura de los materiales Estado sólido (cristalino) Concepto y caracterización de sistemas cristalinos Anisotropía Defectos cristalinos y consecuencia en propiedades microscópicas Correlaciones propiedades-estructura enlace químico Estado vítreo Estructura amorfa Propiedades características de un material vítreo Proceso de cristalización y vitrificación vs propiedades fisicoquímica, modificadores de red 3. REACCIONES INORGÁNICAS, SU ESTEQUIOMETRÍA, SU IMPORTANCIA ECONÓMICA, INDUSTRIAL Y AMBIENTAL 3.1. Clasificación de las reacciones Reacciones según el cambio químico Reacciones según aspectos energéticos 3.2. Balanceo de reacciones químicas Por el método redox Por el método de ión electrón 3.3. Concepto de estequiometría 3.4. Leyes estequiométricas Ley de la conservación de la materia Ley de las proporciones constantes Ley de las proporciones múltiples 3.5. Cálculos estequimétricos A Unidades de medida usuales Atomo-gramo Mol-gramo Volumen-gramo molecular Número de Avogadro 3.6. Cálculos estequimétricos B Relación peso-peso Relación peso-volumen Reactivo limitante Reactivo en exceso Grado de conversión o rendimiento 3.7. Compuestos de importancia económica, industrial y ambiental 4. ESTADO LÍQUIDO, SOLUCIONES, SUSPENSIONES Y COLOIDES 4.1. Estado líquido Clasificación Propiedades conductoras Clasificación de moléculas Clasificación de disolventes Propiedades físicas de un líquido molecular como disolvente Tensión superficial y viscosidad de los líquidos 4.2. Soluciones 3

4 Parámetros de solubilidad Modo de expresar las concentraciones Concentración peso Fracción molar Molaridad Modalidad Normalidad Disolución Densidad Propiedades coligativas 4.3. Suspensiones y coloides Suspensiones Obtención de coloides Coloides liofílicos y liofóbicos Tixotropía 4.4. Estequimetría en soluciones acuosas Ácido-base (conceptos y cálculos) Óxido-reducción (conceptos y cálculos) 5. GASES 5.1. Conceptos básicos Gas como estado de agregación Gas ideal Gas real Propiedades críticas Factor de compresibilidad 5.2. Propiedades PVT Ley de Boyle Charles Gay-Lussac 6. TERMOQUÍMICA Y ELECTROQUÍMICA 6.1. Termoquímica Calor de reacción Calor de formación Calor de solución 6.2. Electroquímica Electroquímica y celdas electrolíticas Electroquímica y celdas voltaicas (galvánicas) Celdas voltáicas de uso práctico Corrosión 7. EQUILIBRIO QUÍMICO, CINÉTICA QUÍMICA Y EQUILIBRIO EN SOLUCIÓN 7.1. Cinética química: velocidades de reacción y el mecanismo de reacción 7.2. La constante de equilibrio 7.3. Principio de Le Chatelier 7.4. Constante de ionización 7.5. Producto de solubilidad 7.6. Solución amortiguadora 4

5 2.- ENLACES QUÍMICOS Y EL ESTADO SÓLIDO (CRISTALINO) 2.1. Introducción Conceptos de enlace químico Se define como la fuerza de unión que existe entre dos átomos, cualquiera que sea su naturaleza, debido a la transferencia total o parcial de electrones para adquirir ambos la configuración electrónica estable correspondiente a los gases inerte; es decir, el enlace es el proceso por el cual se unen átomos iguales o diferentes para adquirir la configuración electrónica estable de los gases inertes y formar moléculas estables. Enlace iónico: El enlace iónico: fuerza electrostática que mantiene unidos a los iones en un compuesto iónico. Características del enlace iónico. Se rompe con facilidad obteniéndose los iones que lo forman, generalmente basta disolver la sustancia. Las substancias con enlaces iónicos son solubles en solventes polares. Formación de los compuestos iónicos. Resulta de las interacciones electrostáticas entre iones, que a menudo resulta de la transferencia neta de uno o más electrones de un átomo o grupo de átomos a otro, es decir, es la atracción de iones con carga opuesta (cationes y aniones) en grandes números para formar un sólido. Ejemplo: un átomo de sodio (Na) fácilmente puede perder un electrón para formar el catión sodio, que se representa como Na+, un átomo de cloro puede ganar un electrón para formar el ion cloruro Cl -, Se dice que el cloruro de sodio (Na Cl?), la sal común de mesa es un compuesto iónico porque está formado por cationes y aniones. El Na+ es el catión y el Cl es el anión. Na Cl Enlace covalente: enlace en el que dos átomos comparten dos electrones. Características del enlace covalente. Es muy fuerte y se rompe con dificultad. Si la diferencia de electronegatividades entre los 2 átomos es marcada, tenemos un enlace polar y se favorecerá la solubilidad de la sustancia en solventes polares. Ejemplo: un enlace O-H Si la diferencia de electronegatividades es poca, tenemos un enlace no polar y se favorecerá la solubilidad de la sustancia en solventes no polares. Ejemplo: un enlace C-H o C-C Tipos de enlaces covalentes. Los átomos pueden formar distintos enlaces covalentes: En un enlace sencillo, dos átomos se unen por medio de un par de electrones. En muchos compuestos se formar enlaces múltiples, es decir, enlaces formados cuando dos átomos comparten dos o más pares de electrones. Si dos átomos comparten dos pares de electrones, el enlace covalente se denomina enlace doble. Un triple enlace surge cuando dos átomos comparten tres pares de electrones. 5

6 Formación de los enlaces covalentes. Se forma cuando dos átomos comparten uno o más pares de electrones. Este tipo de enlace ocurre cuando la diferencia de electronegatividades entre los elementos (átomos) es cero o relativamente pequeña. El enlace covalente se representa con una línea recta que une a los 2 átomos, por ejemplo: O-H Veamos un caso simple de enlace covalente, la reacción de dos átomos de hidrógeno para formar una molécula H2. Un átomo aislado de hidrógeno tiene la configuración electrónica del estado fundamental 1s1, con la densidad de probabilidad para este único electrón esféricamente distribuida en torno al núcleo del hidrógeno. Cuando dos átomos de hidrógeno se acercan uno a otro, el electrón de cada átomo de hidrógeno es atraído por el núcleo del otro átomo de hidrógeno tanto por su propio núcleo. Si estos dos electrones tienen espines opuestos de forma que pueden ocupar la misma región (orbital), ambos electrones pueden ocupar preferencialmente la región entre los dos núcleos. Porque son atraídos por ambos núcleos. Los electrones son compartidos entre los dos átomos de hidrógeno, y se forma un enlace covalente simple. Decimos que los orbítales 1s se solapan, así que ambos electrones ahora están en los orbítales de los dos átomos de hidrógeno. Mientras más se aproximan los átomos, más cierto es esto. En este sentido, cada átomo de hidrógeno ahora tiene la configuración del helio 1s2. Otros pares de átomos no metálicos comparten pares electrónicos para formar enlaces covalentes. El resultado de esta compartición es que cada átomo consigue una configuración electrónica más estable (frecuentemente la misma que la del gas noble más próximo). Enlaces covalentes polares y no polares: Los enlaces covalentes pueden ser polares y no polares. En un enlace no polar tal como el de la molécula de hidrógeno, H2, el par electrónico es igualmente compartido entre los dos núcleos de hidrógeno. Ambos átomos de hidrógeno tienen la misma electronegatividad (tendencia de un átomo a atraer los electrones hacia sí en un enlace químico), es decir que los electrones compartidos están igualmente atraídos por ambos núcleos de hidrógeno y por tanto pasan iguales tiempos cerca de cada núcleo. En este enlace covalente no polar, la densidad electrónica es simétrica con respecto a un plano perpendicular a la línea entre los dos núcleos. Esto es cierto para todas las moléculas diatómicas homonucleares, tales como H2, O2, N2, F2 Y Cl2, porque los dos átomos idénticos tienen electronegatividades idénticas. Por lo que podemos decir: los enlaces covalentes en todas las moléculas diatómicas homonucleares deben ser no polares. Un enlace covalente polar, tal como el fluoruro de hidrógeno los pares electrónicos están compartidos desigualmente. El enlace H-F tiene algún grado de polaridad ya que H y F no son átomos idénticos y por lo tanto no atraen igualmente a los electrones. La electronegatividad del hidrógeno es 2,1 y la del fluor es de 4,0, claramente el átomo F con su mayor electronegatividad, atrae el par electrónico compartido mucho más fuertemente que H. La distribución asimétrica de la densidad electrónica está distorsionada en la dirección del átomo más electronegativo F. Este pequeño desplazamiento de densidad electrónica deja a H algo positivo. El HF se considera una molécula diatómica heteronuclear, ya que contiene dos clases de átomo. 6

7 Momentos bipolares. La polaridad de una molécula la indicamos por su momento dipolar, que mide la separación de cargas en la molécula. El momento dipolar, se define como el producto de la carga Q y la distancia r entre las cargas: Q x r Para mantener la neutralidad eléctrica, las cargas en ambos extremos de una molécula diatómica eléctricamente neutra deben ser iguales en magnitud y de signo opuesto. Sin embargo en la ecuación Q se refiere solo a la magnitud de la carga y no a su signo, por lo que siempre es positiva. Los momentos dipolo generalmente se expresan en unidades Debye (D), así denominadas en honor de Peter Debye. El factor de conversión es: 1 D = 3,33 x C m (Donde C es Coulomb y m es metro) Un momento dipolar se mide colocando una muestra de la sustancia entre dos placas y aplicando un voltaje. Esto produce un pequeño desplazamiento de la densidad electrónica de cualquier molécula, así que el voltaje aplicado disminuye ligeramente. Sin embargo las moléculas diatómicas que contienen enlaces polares, tales como HF, HCl, y CO, tienden a orientarse en el campo eléctrico. Esto hace que el voltaje medido entre las placas disminuya más marcadamente para estas sustancias, y así decimos que estas moléculas son polares. Moléculas tales como F2 o N2 no se reorientan, así que el cambio de voltaje entre las placas es ligero; decimos que estas moléculas son no polares. Generalmente, cuando las diferencias de electronegatividades en las moléculas diatómicas aumentan, los momentos dipolares medidos aumentan. Los momentos dipolares asociados con enlaces individuales sólo pueden medirse en moléculas diatómicas simples. Más que pares seleccionados de átomos, lo que se sujeta a medición son moléculas enteras. Los valores medidos de momentos dipolares reflejan las polaridades globales de las moléculas. Para las moléculas poliatómica son el resultado de todos los dipolos de enlace de las moléculas. El momento dipolo de una molécula formada por tres o mas átomos está determinado tanto por la polaridad de sus enlaces como por su geometría. La presencia de enlaces polares no necesariamente significa que la molécula presente un momento dipolo. Por ejemplo el dióxido de carbono (CO2) es una molécula triatómica, por lo que su geometría puede ser lineal o angular. Cuando la molécula es lineal; no tiene momento dipolo y, cuando la molécula es angular; tiene un momento dipolo. En este caso, el momento dipolo de la molécula completa es la resultante de los dos momentos de enlace, es decir, de los momentos dipolos individuales de los enlaces C = O. el momento de enlace es una cantidad vectorial, lo que significa que tiene tanto magnitud como dirección. El momento dipolo medido es igual a la suma vectorial de los momentos de enlaces Clasificación de los enlaces químicos De acuerdo a sus propiedades. Las sustancias pueden ser de los siguientes tipos: Covalentes: Las sustancias covalentes son aquellas que presentan enlaces covalentes entre sus átomos y se presentan en forma de grandes redes tridimensionales, como por ejemplo el carbono diamante y el carbono grafito. 7

8 El enlace covalente es aquel que se produce cuando los electrones de la última capa de un átomo son atraídos por el núcleo de otro átomo, y lo mismo ocurre con el segundo átomo. Los átomos se acercan hasta que alcanzan un equilibrio en el que las fuerzas de atracción nucleo-electrón y las fuerzas de repulsión nucleo-nucleo y electrón-electrón se equilibran. Se produce un solapamiento de los orbitales atómicos de la última capa. Las propiedades de este tipo de sustancias son: Sólidos, puntos de fusión y ebullición elevados. La solubilidad y la conductividad varían de una sustancia a otra. Moleculares: Son aquellas sustancias que presentan enlaces covalentes, pero que en lugar de formar macromoléculas, forman moléculas discretas, como es el caso del agua, del carbono fulereno y del amoniaco. Las propiedades que presentan este tipo de moléculas son: Son, fundamentalmente, líquidos y gases. Tienen puntos de fusión y ebullición bajos. No conducen la electricidad y son insolubles en agua. Iónicas: Las sustancias iónicas son sustancias que presentan enlaces iónicos y forman grandes redes cristalinas. Los enlaces iónicos se producen cuando en un enlace covalente, la diferencia de electronegatividad entre un átomo y otro es muy grande y suponemos que el par de electrones de enlace está en el átomo más electronegativo. De tal forma que se producen iones positivos y negativos. Este tipo de enlace se da fundamentalmente entre metales y no metales. Estas sustancias son, por ejemplo, el bicarbonato de sodio, el cloruro de potasio y el trisulfuro de aluminio II. Las propiedades que se dan en este tipo de sustancias son: Sólidos cristalinos, puntos de fusión y ebullición elevados, solubles en agua, Conducen la electricidad fundidos o en disolución, pero no conducen la electricidad en estado sólido. Metálicas: Son aquellas que presentan un solo elemento, que forman grandes redes metálicas, donde los electrones de la capa de valencia están deslocalizados moviéndose por todo la sustancia, de esta forma, una nube de electrones recubre la sustancia y le da ese característico brillo metálico. Algunas de estas sustancias son el hierro, el sodio y el potasio. Las propiedades de estas sustancias son: Sólidos, dureza variada. Puntos de fusión y ebullición también muy variados, insolubles en agua y característico brillo metálico Símbolos de Lewis y regla del octeto La Estructura de Lewis, también llamada diagrama de punta, modelo de Lewis o representación de Lewis, es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir. El diagrama de Lewis se puede usar tanto para representar moléculas formadas por la unión de sus átomos mediante enlace covalente como complejos de coordinación. La estructura de Lewis fue propuesta por Gilbert Lewis, quien lo introdujo por primera vez en 1915 en su artículo La molécula y el átomo. 8

9 Las estructuras de Lewis muestran los diferentes átomos de una determinada molécula usando su símbolo químico y líneas que se trazan entre los átomos que se unen entre sí. En ocasiones, para representar cada enlace, se usan pares de puntos en vez de líneas. Los electrones desapartados (los que no participan en los enlaces) se representan mediante una línea o con un par de puntos, y se colocan al rededor de los átomos a los que pertenece. A los diferentes átomos se les pone un punto (o una cruz) alrededor de su símbolo por cada electrón de la capa de valencia. Como la cantidad máxima de electrones posible son ocho, se colocan por parejas: una en la parte superior, otra en la inferior, un par a la izquierda y otro a la derecha. Primero se debe poner uno en cada posición, y después se completan las parejas (ver imagen de la derecha), exceptuando el helio; sus dos electrones aparecen juntos. Las moléculas más simples tienen un átomo central que queda rodeado por el resto de átomos de la molécula. En las moléculas formadas por varios átomos de un elemento y uno sólo de otro elemento diferente, éste último es el átomo central. En los compuestos creados por átomos diferentes de diferentes elementos, el menos electronegativo es el átomo central, exceptuando el hidrógeno. Por ejemplo, en el dicloruro de tionilo ( SOCl2), el átomo central es el azufre. Generalmente, en estas moléculas sencillas primero hay que unir cada átomo no central con el central mediante un enlace simple. En algunos casos es difícil determinar el átomo central, en general cuando todos los átomos de los elementos del compuesto aparecen más de una vez en la molécula. En estas ocasiones, la determinación de cuáles átomos se encuentran unidos a cuáles átomos se debe realizar de algún otro modo, ya sea por prueba y error o mediante el conocimiento previo de estructuras que puedan resultar similares. Electrones [editar]cuando la estructura de Lewis es molecular hay que utilizar formulas adecuadas. El número total de electrones representados en un diagrama de Lewis es igual a la suma de los electrones de valencia de cada átomo. Los electrones que no se encuentran en la capa de valencia de un determinado átomo no se representan. Cuando los electrones de valencia han sido determinados, deben ubicarse en la estructura. Ellos deben ser ubicados inicialmente como pares solitarios: un par de puntos por cada par de electrones disponible. Los pares solitarios se deben poner inicialmente en los átomos externos (con excepción del hidrógeno) hasta que cada átomo externo tiene ocho electrones en pares de vinculación y pares solitarios; los pares solitarios extra deben ser ubicados en el átomo central. Cuando hay dudas, los pares solitarios deben ser ubicados en los átomos más electronegativos primero. 9

10 Una vez que todos los pares solitarios han sido ubicados, los átomos, especialmente los centrales, pueden no tener un octeto de electrones. En ese caso, los átomos deben formar un enlace doble; un par solitario de electrones es movido para formar un segundo enlace entre los dos átomos. Así como el par del enlace es compartido entre los dos átomos, el átomo que originalmente tenía el par solitario sigue teniendo un octeto; y el otro átomo ahora tiene dos electrones más en su última capa. Fuera de los compuestos orgánicos, solo una minoría de los compuestos tiene un octeto de electrones en su última capa. Octetos incompletos son comunes para los compuestos de los grupos 2 y 13 tales como el berilio, boro, y aluminio. Compuestos con más de ocho electrones en la representación de la estructura de Lewis de la última capa del átomo, son llamados hipervalentes, y son comunes en los elementos de los grupos 15 al 18, tales como el fósforo, azufre,yodo y xenón. Las estructuras de Lewis para iones poli-atómicos deben ser dibujadas mediante el mismo método. Cuando se cuentan los electrones, los iones negativos deben tener electrones extra ubicados en sus estructuras de Lewis; los iones positivos deben tener menos electrones que una molécula neutra. Cuando se escribe la estructura de Lewis de un ion, la estructura entera es ubicada entre corchetes, y la carga se escribe como un exponente en el rincón derecho superior, fuera de los corchetes. Un método más simple ha sido propuesto para construir estructuras de Lewis eliminando la necesidad de contar los electrones: los átomos son dibujados mostrando los electrones de valencia, los enlaces son formados, entonces, formando parejas de electrones de valencia de los átomos involucrados en el proceso de crear enlaces, aniones y cationes son formados añadiendo o removiendo electrones de los átomos apropiados. La regla del octeto Según la regla del octeto, los átomos son más estables cuando consiguen ocho electrones en la capa de valencia, sean pares solitarios o compartidos mediante enlace covalente. Considerando que cada enlace covalente simple aporta dos electrones a cada átomo de la unión, al dibujar un diagrama o estructura de Lewis, hay que evitar asignar más de ocho electrones a cada átomo. Sin embargo, hay algunas excepciones. Por ejemplo, el hidrógeno tiene un sólo orbital en su capa de valencia, la cual puede aceptar como máximo dos electrones; por eso, solo puede compartir su orbital con sólo un átomo formando un sólo enlace. Por otra parte, los átomos no metálicos a partir del tercer período pueden formar "octetos expandidos" es decir, pueden contener más que ocho orbitales en su capa de valencia, por lo general colocando los orbitales extra en subniveles. 10

11 Regla de los 18 electrones y de los 32 electrones [editar]artículo principal: Regla de los 18 electrones La regla de los 18 electrones se aplica para átomos a partir del cuarto período de la tabla periódica, los cuales pueden completar 16 electrones para llenar sus orbitales y conseguir una configuración de elemento químico conocido como superextragasnoble. De forma similar, a partir del sexto período los átomos pueden completar 32 electrones para llenar sus orbitales Enlace iónico El enlace iónico: fuerza electrostática que mantiene unidos a los iones en un compuesto iónico. Características del enlace iónico. Se rompe con facilidad obteniéndose los iones que lo forman, generalmente basta disolver la sustancia. Las substancias con enlaces iónicos son solubles en solventes polares. Formación de los compuestos iónicos. Resulta de las interacciones electrostáticas entre iones, que a menudo resulta de la transferencia neta de uno o más electrones de un átomo o grupo de átomos a otro, es decir, es la atracción de iones con carga opuesta (cationes y aniones) en grandes números para formar un sólido. Ejemplo: un átomo de sodio (Na) fácilmente puede perder un electrón para formar el catión sodio, que se representa como Na+, un átomo de cloro puede ganar un electrón para formar el ion cloruro Cl -, Se dice que el cloruro de sodio (Na Cl?), la sal común de mesa es un compuesto iónico porque está formado por cationes y aniones. El Na+ es el catión y el Cl es el anión. Na Cl ITSUR angel rt: ENLACE IÓNICO Si enfrentamos un átomo al que le falten pocos electrones en su capa de valencia para adquirir la configuración de gas noble (muy electronegativo, tendencia a coger electrones), tal como el cloro, con otro cuya electronegatividad sea baja (tendencia a ceder electrones), tal como el sodio, éste cederá un electrón al cloro. Como consecuencia, el cloro se convertirá en un ión negativo (anión) mientras que el sodio se convierte en un ión positivo (catión). Ambos se unen debido a la atracción entre car-gas de distinto signo (atracción electrostática) Observa que el proceso fundamental consiste en la transferencia de electrones entre los áto-mo (uno da un electrón y el otro lo coge), formándose iones de distinto signo que se atraen. En la realidad este proceso se realiza simultáneamente en millones de átomos con el resultado de que se formarán millones de iones positivos y negativos que se atraen mutuamente formando una estructura integrada por un número muy elevado de átomos dispuestos en forma muy ordenada. Es lo que se llama red iónica o cristal. Este enlace tendrá lugar entre átomos de electronegatividad muy distinta: entre metales y no metales. 11

12 En los compuestos iónicos no se puede hablar de moléculas individuales, sino de grandes agregados. Por tanto en los compuestos iónicos la fórmula representa la proporción en que los iones se encuentran en el compuesto. Ejemplos: Na Cl. La relacion de iones de Na+ e iones Cl es 1:1 (hay el mismo número de ambos) Ca Cl2. Hay doble número de iones Cl que de iones Ca +2 Los compuestos iónicos tienen las siguientes propiedades: Son sólidos cristalinos: estructura muy ordenada Poseen puntos de fusión y ebullición elevados: enlace fuerte Suelen ser solubles en agua. Fundidos o en disolución acuosa son buenos conductores de la corriente eléctrica: debido a la existencia de iones (cargas) libres Elementos que forman compuestos iónicos En primer lugar nos encontramos con sustancias como el cloruro de sodio, yoduro de potasio, cloruro de magnesio, etc que son compuestos de aspecto cristalino, frágiles y con elevados puntos de fusión y ebullición. Son, en general, más o menos solubles en disolventes del tipo del agua y no lo son en disolventes del tipo del benceno. No son conductores de la corriente en estado sólido, pero sí cuando se presentan fundidos o en disolución. La existencia de este tipo de sustancias, entre las que hemos citado como ejemplos típicos a las sales, está ligada a una forma de enlace que, por razones que luego veremos, se denomina enlace iónico, designando consecuentemente dichas sustancias como compuestos iónicos Propiedades físicas de compuestos iónicos a) Puntos de fusion y ebullicion elevados b) Solidos duros y quebradizos c) Baja conductividad electrica y termica al estado solido 2.4. Enlace covalente las reacciones entre dos átomos no metales producen enlaces covalentes. Este tipo de enlace se produce cuando existe electronegatividad polar y se forma cuando la diferencia de electronegatividad no es suficientemente grande como para que se efectúe transferencia de electrones. De esta forma, los dos átomos comparten uno o más pares electrónicos en un nuevo tipo de orbital, denominado orbital molecular. A diferencia de lo que pasa en un enlace iónico, en donde se produce la transferencia de electrones de un átomo a otro, en el enlace químico covalente, los electrones de enlace son compartidos por ambos átomos. En el enlace covalente, los dos átomos no metálicos comparten un electrón, es decir 12

13 se unen por uno de sus electrones del último orbital, el cual depende del número atómico del átomo en cuestión. Existen dos tipos de sustancias covalentes: Sustancias covalentes moleculares: los enlaces covalentes forman moléculas. Tienen las siguientes propiedades: Temperaturas de fusión y ebullición bajas. En condiciones ordinales (25 ºC aprox.) pueden ser sólidos, líquidos o gaseosos Son blandos en estado sólido. Aislantes de corriente eléctrica y calor. Solubilidad. Las moléculas polares son solubles en disolventes polares y las apolares son solubles en disolventes apolares (semejante disuelve a semejante). Redes: además las sustancias covalentes forman redes, semejantes a los compuestos iónicos. Tienen estas propiedades: Elevadas temperaturas de fusión y ebullición. Sólidos en condiciones ordinales. Son sustancias muy duras (excepto el grafito). Aislantes (excepto el grafito). Insolubles. Neocloridas Comparación entre las propiedades de los compuestos iónicos y covalentes Propiedades de las sustancias iónicas: Las sustancias iónicas se encuentran en la naturaleza formando redes cristalinas, por tanto son sólidas. Su dureza es bastante grande, y tienen por lo tanto puntos de fusión y ebullición altos. Son solubles en disolventes polares como el agua. Cuando se tratan de sustancias disueltas tienen una conductividad alta. Propiedades generales de los compuestos iónicos 13

14 En general, los compuestos con enlace iónico presentan puntos de ebullición y fusión muy altos, pues para separarlos en moléculas hay que deshacer todo el edificio cristalino, el cual presenta una elevada energía reticular. Propiedades de los compuestos covalentes. Los compuestos covalentes suelen presentarse en estado líquido o gaseoso aunque también pueden ser sólidos. Por lo tanto sus puntos de fusión y ebullición no son elevados. La solubilidad de estos compuestos es elevada en disolventes polares, y nula su capacidad conductora. Los sólidos covalentes macromoleculares, tienen altos puntos de fusión y ebullición, son duros, malos conductores y en general insolubles Fuerza del enlace covalente La energía de disociación del enlace, D, se define como la diferencia de energía entre el mínimo de la curva de energía potencial de la molécula diatómica y la energía de los átomos separados. Cuanto mayor es la energía de disociación del enlace mayor es la fuerza de unión entre los átomos que forman dicho enlace. Esto es un aspecto importante a considerar cuando se estudien las reacciones que una molécula puede sufrir, pues una molécula cuyos átomos estén fuertemente unidos necesitará una energía de activación alta para poder reaccionar. Cuando se hace uso de las fuerzas de enlace en ciclos termodinámicos, es más conveniente emplear la entalpía de disociación del enlace, ΔHd, que es la variación de entalpía para la reacción de disociación A B (g) A(g) + B(g) La entalpía de disociación del enlace difiere de la energía del enlace en RT Geometrías moleculares La Geometría molecular o estructura molecular es la disposición tri-dimensional de los átomos que constituyen una molécula. Determina muchas de las propiedades de las moléculas, como son la reactividad, polaridad, fase, color, magnetismo, actividad biológica, etc. Las geometrías moleculares a temperaturas próximas al cero absoluto porque a temperaturas más altas las moléculas presentarán un movimiento rotacional considerable. En el estado sólido la geometría molecular puede ser medida por Difracción de rayos X. Las geometrías se pueden calcular por procedimientos mecánico cuánticos ab initio o por métodos semiempíricos de modelamiento molecular. Las moléculas grandes a menudo existen en múltiples conformaciones estables que difieren en su geometría molecular y están separadas por barreras altas en la superficie de energía potencial. La posición de cada átomo se determina por la naturaleza de los enlaces químicos con los que se conecta a sus átomos vecinos. La geometría molecular puede describirse por las posiciones de estos 14

15 átomos en el espacio, mencionando la longitud de enlace de dos átomos unidos, ángulo de enlace de tres átomos conectados y ángulo de torsión de tres enlaces consecutivos. Dado que el movimiento de los átomos en una molécula está determinado por la mecánica cuántica, uno debe definir el "movimiento" de una manera cuántica. Los movimientos cuánticos (externos) de traslación y rotación cambian fuertemente la geometría molecular. (En algún grado la rotación influye en la geometría por medio de la fuerza de Coriolis y la distorsión centrífuga, pero son despreciables en la presente discusión). Un tercer tipo de movimiento es la vibración, un movimiento interno de los átomos en una molécula. Las vibraciones moleculares son armónicas (al menos en una primera aproximación), lo que significa que los átomos oscilan en torno a su posición de equilibrio, incluso a la temperatura del cero absoluto. En el cero absoluto todos los átomos están en su estado vibracional basal y muestran movimiento mecánico cuántico de punto cero, esto es, la función de onda de un modo vibracional simple no es un pico agudo, sino un exponencial de ancho finito. A temperaturas mayores, los modos vibracionales pueden ser excitados térmicamente (en un interpretación clásica, esto se expresa al enunciar que "las moléculas vibrarán más rápido"), pero siempre oscilan alrededor de una geometría reconocible para la molécula. Para tener una comprensión más clara de la probabilidad de que la vibración de una molécula pueda ser térmicamente excitada, se inspecciona el factor de Boltzmann, donde ΔE es la energía de excitación del modo vibracional, k es la constante de Boltzmann y T es la temperatura absoluta. A 298K (25 C), unos valores típicos del factor de Boltzmann son: ΔE = 500 cm-1 --> 0.089; ΔE = 1000 cm-1 --> 0.008; ΔE = 1500 cm-1 --> Esto es, si la energía de excitación es 500 cm-1, aproximadamente el 9% de las moléculas están térmicamente excitadas a temperatura ambiente. La menor energía vibracional de excitación es el modo de flexión (aproximadamente 1600 cm-1). En consecuencia, a temperatura ambiente menos del 0,07% de todas las moléculas de una cantidad dada de agua vibrarán más rápido que en el cero absoluto. Como se mencionó anteriormente, la rotación influye fuertemente sobre la geometría molecular. Pero, como movimiento mecánico cuántico, se excita a bajas temperaturas (comparada con la vibración). Desde un punto de vista clásico, puede decirse que más moléculas rotan más rápidamente a temperatura ambiente, esto es que tienen mayor velocidad angular y momentum angular. En lenguaje de mecánica cuántica: más "eigenstates" de alto momentum angular son poblados térmicamente al aumentar la temperatura. Las energías de excitación rotacionales típicas están en el orden de unos pocos cm-1. Los resultados de muchos experimentos espectroscópicos están ensanchados porque involucran una media de varios estados rotacionales. Frecuentemente es difícil obtener las geometrías a partir de los espectros a altas temperaturas, porque el número de estados rotacionales rastreados en el experimento aumenta al incrementarse la temperatura. En consecuencia, muchas observaciones espectroscópicas sólo pueden esperarse que conduzcan a geometrías moleculares confiables a temperaturas cercanas al cero absoluto RPECV 15

16 Modelo RPECV (repulsión entre pares de electrones de la capa de valencia) Este modelo explica la distribución geométrica de los pares electrónicos que rodean un átomo central en términos de repulsión electrostática entre dichos. Los enlaces doble y triples se pueden considerar como un en lace sencillo, sin embargo, conocemos que en enlaces múltiples hay mayor densidad electrónica y esto genera mayor repulsión. Podemos dividir las moléculas en dos grupos: aquellas que no tienen pares electrónicos libres y las que si lo poseen. Moléculas en las que el átomo central no tiene pares libres de electrones. Consideremos que las moléculas están solo formadas por dos átomos, donde A seconsidera como el átomo central y B quien se enlaza a él en diferentes proporciones (AB1, AB2, AB3...). Nosotros debemos diferenciar entre estos dos conceptos: la geometría de los pares de electrones totales que rodean el átomo central y la geometría que realmente adoptan los átomos alrededor de él. AB2 Cloruro de berilio (BeCl2) Observando la estructura de Lewis para la molécula, podemos afirmar que los pares enlazantes (electrones que forman el enlace) se repelen entre sí, por lo cual adoptan una posición de mínima repulsión, siendo esta en extremos opuestos, con un ángulo de 180. En este caso tanto los electrones y los átomos toman la geometría lineal. AB3 Trifluoruro de boro (BF3). En el trifluoruro de boro, el átomo de boro se enlaza covalentemente con tres átomos de flúor, los cuales apuntan a los vértices de un triángulo equilátero, siendo una estructura totalmente plana. 16

17 Moléculas en las que el átomo central tiene uno o más pares de electrones libres. La geometría de este tipo de moléculas es más compleja ya que se presentan diferentes tipos de repulsión entre los pares enlazantes, entre pares libres y entre un par enlazante y uno libre. De acuerdo con la teoría de RPECV, las fuerzas de repulsión disminuyen según el siguiente orden. Par libre/par libre > par libre/par enlazante > par enlazante/par enlazante La nomenclatura para este tipo de moléculas es ABxEy, donde A es el átomo central, B los átomos que se enlazan y E el número de pares de electrones libres de A AB2E Dióxido de azufre (SO2) La estructura de Lewis para esta molécula sería la siguiente Según esta distribución espacial, la molécula debería ser lineal, pero debido a la presencia de un par libre de electrones, se genera repulsión con los pares enlazantes, dando una nueva geometría que es la angular, esto favorecido por la baja fuerza de repulsión entre pares enlazantes Enlaces covalentes y traslape de orbitales El segundo mayor tipo de enlace atómico ocurre cuando los átomos comparten electrones. Al contrario de los enlaces iónicos en los cuales ocurre una transferencia completa de electrones, el enlace covalente ocurre cuando dos (o más) elementos comparten electrones. El enlace covalente ocurre porque los átomos en el compuesto tienen una tendencia similar hacia los electrones (generalmente para ganar electrones). Esto ocurre comúnmente cuando dos no metales se enlazan. Ya que ninguno de los no elementos que participan en el enlace querrá ganar electrones, estos elementos compartirán electrones para poder llenar sus envolturas de valencia. Un buen ejemplo de un enlace covalente es ese que ocurre entre dos átomos de hidrógeno. Los átomos de hidrógeno (H) tienen un electrón de valencia en su primera envoltura. Puesto que la capacidad de esta envoltura es de dos electrones, cada átomo hidrógeno querrá recoger un segundo electrón. En un esfuerzo por recoger un segundo electrón, el átomo de hidrógeno reaccionará con átomos H vecinos para formar el compuesto H2. Ya que el compuesto de hidrógeno es una combinación de átomos igualados, los átomos compartirán cada uno de sus electrones individuales, formando así un enlace covalente. De esta manera, ambos átomos comparten la estabilidad de una envoltura de valencia. 17

18 La comprensión de la naturaleza del enlace químico es uno de los objetivos principales de la química. El enlace es la clave de la estructura molecular que a su vez está íntimamente ligada a las propiedades físicas y químicas de los compuestos. Las actuales teorías permiten predecir estructuras y propiedades que suelen ser exactas (aunque no siempre son enteramente satisfactorias, al fin y al cabo son teorías). Debemos recordar que las teorías propuestas siempre han de ser congruentes con los hechos experimentales. Si no hay concordancia entre teoría y hechos, la primera habrá de modificarse a fin de tomar en cuenta los hechos conocidos. En este capítulo del libro mencionaremos dos de estas teorías que explican la naturaleza del enlace químico y analizaremos una de ellas en mas detalles de acuerdo a los objetivos del curso para los cuales está orientado este texto. La primera es la teoría de la repulsión del par electrónico de la capa de valencia (TRPECV) que supone que los pares electrónicos se ordenan de modo que haya una separación máxima (y por ende una mínima repulsión) entre dichos pares. Aunque esto puede parecer obvio (y lo es), esta idea ha sido muy útil en la predicción de las geometrías moleculares e iónicas. La segunda es la teoría del enlace de valencia (TEV), la cual explica la formación de los enlaces como el resultado del solapamiento de orbitales atómicos de dos átomos. Se introducirán también otros conceptos que nos permitirán mezclar los orbitales atómicos y formar nuevos orbitales con distinta orientación espacial. Este proceso de mezcla, llamado HIBRIDACIÓN, explica a veces resultados experimentales o permite construir las estructuras predichas por la TRPEVC. La TEV se aplica a los orbitales híbridos en la misma forma en que se aplica a los orbitales puros. En cualquiera de las dos teorías, nuestra atención estará siempre dirigida a los electrones de la capa más externa, o de valencia, de los átomos, porque dichos electrones son los que intervienen en el enlace Orbitales híbridos Cada uno de los orbitales equivalentes que pueden obtenerse mediante combinación lineal de orbitales atómicos distintos. La hibridación de orbitales da como resultado orbitales de enlace que son combinación lineal de sus componentes. Los orbitales híbridos más generalizados son los siguientes: sp, sp2, sp3 y spd. Los orbitales moleculares, que representan la distribución espacial de los electrones de enlace en una molécula, son, fundamentalmente, orbitales híbridos. Las formas de las moléculas enlazadas por hibridaciones de sus orbitales son forzadas por los ángulos entre sus átomos: Sin hibridación: forma lineal Hibridación sp: forma lineal con ángulos de 180 Hibridación sp 18

19 : forma trigonal plana con ángulos de 120. Por ejemplo B Cl 3. Hibridación sp³: forma tetraédrica con ángulos de Por ejemplo C Cl 4. Hibridación sp³d: forma trigonal bipiramidal con ángulos de 90 y 120. Por ejemplo P Cl 5. Hibridación sp³d : forma octaédrica con ángulos de 90. Por ejemplo SF Momentos dipolares Se define como momento dipolar químico (μ) a la medida de la intensidad de la fuerza de atracción entre dos átomos, es la expresión de la asimetría de la carga eléctrica. Está definido como el producto entre la distancia d que separa a las cargas (longitud del enlace) y el valor de las cargas iguales y opuestas en un enlace químico: Usualmente se encuentra expresado en Debyes (1 D = 1 A. 1 ues). El valor de q puede interpretarse como el grado de compartición de la carga, es decir, según las diferencias de electronegatividad, que porcentaje (100q) de la carga compartida por el enlace covalente está desplazada hacia la carga en cuestión. Dicho de otro modo, q representa qué parte de un electrón está siendo "sentida" de más o de menos por las cargas en cuestión Enlaces múltiples Los átomos pueden formar distintos enlaces covalentes: En un enlace sencillo, dos átomos se unen por medio de un par de electrones. En muchos compuestos se formar enlaces múltiples, es decir, enlaces formados cuando dos átomos comparten dos o más pares de electrones. Si dos átomos comparten dos pares de electrones, el enlace covalente se denomina enlace doble. Un triple enlace surge cuando dos átomos comparten tres pares de electrones. Formación de los enlaces covalentes. Se forma cuando dos átomos comparten uno o más pares de electrones. Este tipo de enlace ocurre cuando la diferencia de electronegatividades entre los elementos (átomos) es cero o relativamente pequeña. El enlace covalente se representa con una línea recta que une a los 2 átomos, por ejemplo: O-H Veamos un caso simple de enlace covalente, la reacción de dos átomos de hidrógeno para formar una molécula H2. Un átomo aislado de hidrógeno tiene la configuración electrónica del estado fundamental 1s1, con la densidad de probabilidad para este único electrón esféricamente distribuida en torno al núcleo del hidrógeno 2.5. Enlace metálico y elementos semiconductores La Teoría de Orbitales Moleculares puede emplearse para explicar las propiedades de los sólidos (iónicos, metálicos y moleculares). Un sólido se puede considerar formado por una serie de átomos unidos entre sí mediante enlaces de tipo covalente. Esta idea tiene la ventaja, desde un punto de vista químico, de tratar al sólido como una especie no muy diferente a las pequeñas moléculas 19

20 covalentes. La aproximación es aceptable para describir el enlace en sólidos metálicos así como para explicar las propiedades que presentan estos compuestos como el brillo, la maleabilidad y las conductividades térmicas y eléctricas. Todas estas propiedades son el resultado de la contribución de los electrones de cada átomo en la formación de un mar de electrones. El brillo y las propiedades eléctricas derivan de la movilidad que poseen dichos electrones. La alta conductividad térmica observada en un metal es también una consecuencia de la movilidad electrónica porque un electrón puede colisionar con un átomo que esté vibrando y en la colisión el átomo transfiere su energía al electrón, el cual puede, a su vez, transferirla a otro átomo de cualquier parte del sólido. La facilidad con la que los metales pueden ser deformados es otra de las consecuencias de la movilidad de los electrones, ya que este mar de electrones puede ajustarse fácilmente y de forma rápida a las deformaciones del sólido sin modificar el enlace entre los átomos. La conducción electrónica es característica de los sólidos metálicos y de los semiconductores. Para distinguir entre un metal y un semiconductor se utiliza el siguiente criterio basado en la dependencia de la conductividad eléctrica con la temperatura. - Un conductor metálico es aquella sustancia cuya conductividad eléctrica disminuye al aumentar la temperatura. - Un semiconductor es aquella sustancia cuya conductividad eléctrica aumenta al hacerlo la temperatura. Un sólido aislante es una sustancia que presenta una baja conductividad eléctrica; sin embargo cuando su conductividad se puede medir, ésta aumenta con la temperatura, como ocurre en los semiconductores. A todos los efectos se pueden considerar dos comportamientos eléctricos básicos, el metálico y el semiconductor. Los valores típicos de la conductividad eléctrica de los metales están en el rango de ohm-1 cm-1 y los aislantes presentan conductividades menores de ohm-1 cm-1. Los semiconductores presentan conductividades intermedias ( ohm-1cm-1). Un superconductor es una clase especial de material que presenta resistencia eléctrica cero por debajo de su temperatura crítica Teoría de bandas La idea central que subyace en la descripción de la estructura electrónica de los sólidos metálicos es la de que los electrones de valencia de cada átomo se distribuyen a través de toda la estructura. Este concepto se expresa, de una manera más formal, haciendo una simple extensión de la Teoría de Orbitales Moleculares, en la que el sólido se trata como molécula infinitamente larga. Estos principios pueden también aplicarse a la descripción de sólidos no metálicos como los sólidos iónicos o los sólidos moleculares. Formación de la banda mediante el solapamiento orbital. El solapamiento de un gran número de orbitales atómicos conduce a un conjunto de orbitales moleculares que se encuentran muy próximos en energías y que forman virtualmente lo que se conoce como una banda. Las bandas se encuentran separadas entre sí mediante espacios energéticos a los que no les corresponde ningún orbital molecular (Figura 2). 20

21 Figura 2. La estructura electrónica de un sólido se caracteriza por la existencia de bandas de orbitales. Para poder visualizar la formación de una banda considérese una distribución lineal de átomos (sólido unidimensional), separados todos a la misma distancia (a), en los que cada átomo posee un orbital de tipo s. Cada orbital de tipo s de un átomo solapará con el orbital s del átomo vecino. Así, si sólo hubiera dos átomos en el conjunto el solapamiento conduciría a la formación de 2 orbitales moleculares, uno de enlace y otro de antienlace. Si tenemos 3 átomos, el solapamiento de los 3 orbitales de tipo s originaría la formación de 3 orbitales moleculares, de enlace, de no enlace y de antienlace. A medida que se van añadiendo átomos al conjunto cada uno contribuye con su orbital molecular al solapamiento y en consecuencia se obtiene un nuevo orbital molecular. Así, cuando el conjunto está formado por N átomos se obtienen N orbitales moleculares. El orbital molecular de menor energía no presenta ningún nodo entre los átomos vecinos, mientras que el orbital molecular de mayor energía presenta un nodo entre cada par de átomos vecinos. Los restantes orbitales van teniendo sucesivamente 1, 2, 3... nodos internucleares y sus energías están comprendidas entre la del orbital más enlazante (de menor energía) y la del más antienlazante (mayor energía). La diferencia de energía entre los N orbitales moleculares es tan pequeña que se forma una banda o continuo de niveles de energía. La anchura total de la banda depende de la fuerza de la interacción entre los orbitales atómicos de los átomos vecinos, de forma que, cuanto mayor sea la interacción, mayor será el solapamiento entre los orbitales y mayor será la anchura de la banda resultante (o separación entre el orbital molecular más enlazante y el más antienlazante). La anchura de una banda es, por lo general, una medida del grado de localización del enlace. Una 21

22 banda estrecha representa un alto grado de localización de un enlace y a medida que se va haciendo más ancha los enlaces se hacen más deslocalizados. Figura 3. Formación de una banda de orbitales moleculares. La banda que se ha descrito se ha formado a partir del solapamiento de orbitales s y se denomina, por tanto, banda s (Figura 4). Si en los átomos existen orbitales de tipo p disponibles, éstos pueden solapar originando una banda p (Figura 5). Como los orbitales p poseen mayor energía que los orbitales s de la misma capa, se observa a menudo la separación entre la banda s y la banda p. Pero si las bandas son anchas y las energías de los orbitales s y p de la misma capa no difieren mucho entonces ambas bandas se solapan (Figura 6). Este solapamiento es el responsable de que los elementos del grupo 2 de la Tabla Periódica tengan un comportamiento metálico. De la misma forma, la banda d está formada por el solapamiento de orbitales atómicos d. Figura 4. Orbitales moleculares y banda s. 22

23 Figura 5. Orbitales moleculares y banda p. Figura 6. (a) y (b) Bandas s y p, que pueden solapar o no, dependiendo de la anchura. (c) Niveles ocupados y nivel de Fermi a o K Clasificación en base a su conductividad eléctrica La teoría de las bandas hace referencia al aglutinamiento de los átomos en los metales, esta establece que los electrones deslocalizados se mueven libremente a través de las bandas que se forman por el solapamiento de los orbítales moleculares. Al estar tan amontonados los átomos de un metal, los orbítales moleculares quedan muy cerca uno de otro, tanto así que los orbítales tienen energías tan parecidas que quedan mejor descritos como una banda. Entonces los niveles energéticos llenos de cada átomo, tan parecidos uno del otro, constituyen una banda de valencia. Sobre esta banda de valencia se forma otra banda por encima de ésta, correspondiente a los orbítales deslocalizados y vacíos que se forman por el solapamiento de los orbítales mas externos, dicha banda recibe el nombre de banda de conducción. 23

El H solo necesita 2 electrones en su capa de valencia como el He.

El H solo necesita 2 electrones en su capa de valencia como el He. Tema II. Enlace químico Concepto de enlace químico y modelos de enlace Un enlace químico se caracteriza por una situación de mínima energía, respecto a los átomos de partida que lo forman, de ahí que la

Más detalles

ACTIVIDADES DA UNIDADE 14: O ENLACE QUÍMICO

ACTIVIDADES DA UNIDADE 14: O ENLACE QUÍMICO ACTIVIDADES DA UNIDADE 14: O ENLACE QUÍMICO 1 Puede formarse un enlace iónico entre átomos de un mismo elemento químico? Por qué? No. El enlace químico se produce entre átomos con valores muy diferentes

Más detalles

TRABAJO PRÁCTICO: MODELOS EXTREMOS DE SUSTANCIA

TRABAJO PRÁCTICO: MODELOS EXTREMOS DE SUSTANCIA 1 Complemento TRABAJO PRÁCTICO: S EXTREMOS DE SUSTANCIA FUNDAMENTOS TEÓRICOS BÁSICOS Todas las sustancias pueden considerarse formadas por un conjunto de unidades estructurales o fundamentales. La clase

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio 2, Opción B Reserva 2, Ejercicio 2, Opción A Reserva, Ejercicio 2, Opción A Reserva, Ejercicio, Opción B

Más detalles

Hibridación de orbitales.

Hibridación de orbitales. Hibridación de orbitales. REACCIONES ORGANICAS Las formas características de enlace del átomo de carbono en los compuestos orgánicos se describe frecuentemente de acuerdo con el modelo de hibridación de

Más detalles

Tema 4. Conceptos básicos del enlace químico

Tema 4. Conceptos básicos del enlace químico Tema 4 Conceptos básicos del enlace químico Algunos porqués : Porqué este tema? Porqué se forman los enlaces? Porqué Cl2 y no Cl?, Porqué C4 y no C5? Porqué el nitrógeno es tan inerte? Porqué la molécula

Más detalles

TEMA 6: ENLACE QUÍMICO

TEMA 6: ENLACE QUÍMICO I.E.S. Al-Ándalus. Dpto. de Física y Química. Química 2º Bachillerato. Tema 6. Enlace Químico - 1 - TEMA 6: ENLACE QUÍMICO 6.1. ESTABILIDAD ATÓMICA. REGLA DEL OCTETE DE LEWIS En la naturaleza conocemos

Más detalles

INTRODUCCIÓN AL ENLACE IÓNICO

INTRODUCCIÓN AL ENLACE IÓNICO INTRODUCCIÓN AL ENLACE IÓNICO AUTORIA SILVIA GARCÍA SEPÚLVEDA TEMÁTICA FÍSICA Y QUÍMICA ETAPA BACHILLERATO Resumen A continuación voy a pasar a describir como se lleva a cabo el estudio del enlace químico,

Más detalles

TEMA 5: INTROD. AL ESTADO SÓLIDO

TEMA 5: INTROD. AL ESTADO SÓLIDO ESTADO SÓLIDO Figuras p1143 y p1146, Tipler 5ª Ed SEMICONDUCTORES Figuras p1141 y p1160, Tipler 5ª Ed DISPOSITIVOS http://axxon.com.ar/zap/c-zapping0127.htm Enlace químico: fuerza que mantiene unidos los

Más detalles

Lecturas previas a las clases del 14 y 20 de diciembre (Tema 20)

Lecturas previas a las clases del 14 y 20 de diciembre (Tema 20) Lecturas previas a las clases del 14 y 20 de diciembre (Tema 20) La lectura de los epígrafes que se indican y del resumen que sigue es indispensable para las clases magistrales del 14 y 20 de diciembre

Más detalles

FUERZAS INTERMOLECULARES

FUERZAS INTERMOLECULARES FUERZAS INTERMOLECULARES Lic. Lidia Iñigo Las fuerzas intermoleculares, como su nombre lo indica, son las fuerzas que unen moléculas. Ya deberías saber que no todas las sustancias forman moléculas. Existen

Más detalles

3 puntos en dicho examen. La prueba será de formato similar a las que se realizan en las PAU.

3 puntos en dicho examen. La prueba será de formato similar a las que se realizan en las PAU. - CRITERIOS DE CALIFICACIÓN 2º Bachillerato Química. Se realizarán dos pruebas por evaluación. A la primera le corresponde un 30 % de la nota final de la evaluación y a la segunda, en la que se incluye

Más detalles

EL ENLACE QUÍMICO ENLACE IÓNICO

EL ENLACE QUÍMICO ENLACE IÓNICO EL ENLACE QUÍMIC IES La Magdalena. Avilés. Asturias Los átomos tienden a unirse unos a otros para formar entidades más complejas. De esta manera se construyen todas las sustancias. Por qué los átomos tienden

Más detalles

ESTRUCTURA DE LA MATERIA QCA 09 ANDALUCÍA

ESTRUCTURA DE LA MATERIA QCA 09 ANDALUCÍA 1.- Considere el elemento cuya configuración electrónica es 1s 2 2s 2 2p 6 3s 2 3p 4. a) De qué elemento se trata? b) Justifique el periodo y el grupo del sistema periódico a los que pertenece. c) Cuál

Más detalles

Química Inorgánica-63.13- Dra.Silvia E. Jacobo. Sólidos. Estructuras Cristalinas

Química Inorgánica-63.13- Dra.Silvia E. Jacobo. Sólidos. Estructuras Cristalinas Sólidos Estructuras Cristalinas Ordenamientos atómicos En gases no hay orden En líquidos hay orden de corto alcance En sólidos hay orden de largo alcance El ordenamiento está determinado por el tipo de

Más detalles

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge EL AGUA: VOLÚMENES Y COMPOSICIÓN DE LOS LÍQUIDOS CORPORALES La vida comenzó en el agua del mar, y las condiciones que reinaban en aquel ambiente primigenio marcaron las características químicas de la materia

Más detalles

Teoría de repulsión de pares electrónicos de la capa de Valencia

Teoría de repulsión de pares electrónicos de la capa de Valencia Teoría de repulsión de pares electrónicos de la capa de Valencia La estructura del Lewis muestra las moléculas en dos dimensiones generalmente con una representación plana de ellos y los pares de electrones

Más detalles

Soluciones Electrolíticas María de la Luz Velázquez Monroy & Miguel Ángel Ordorica Vargas

Soluciones Electrolíticas María de la Luz Velázquez Monroy & Miguel Ángel Ordorica Vargas Introducción Soluciones Electrolíticas María de la Luz Velázquez Monroy & Miguel Ángel Ordorica Vargas Siguiendo los trabajos de Humphrey Davy, sobre electrolisis de metales, en 1834, Michael Faraday inició

Más detalles

Enlaces covalentes. 1. Concepto de onda mecánica

Enlaces covalentes. 1. Concepto de onda mecánica Enlace covalente omo ya hemos dicho, si tenemos una sustancia sólida con un muy elevado punto de fusión, podemos suponer, sin temor a equivocarnos, que está formado por entidades que forman redes tridimensionales,

Más detalles

2.1.- ESTRUCTURA DEL ÁTOMO

2.1.- ESTRUCTURA DEL ÁTOMO 2.1.- ESTRUCTURA DEL ÁTOMO El átomo está formado por un núcleo, que contiene nuetrones y protones, el que a su vez esta rodeado por electrones. La carga eléctrica de un átomo es nula. Número atómico es

Más detalles

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos.

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos. Unidad 3 Ácidos, Hidróxidos y Sales: óxidos básicos, óxidos ácidos, hidróxidos, hidrácidos o ácidos binarios, ácidos ternarios, sales binarias, ternarias y cuaternarias. Formación y nomenclatura. Enlaces

Más detalles

ENLACE QUÍMICO. Actividades Unidad

ENLACE QUÍMICO. Actividades Unidad Solución Actividades Tema 1 ENLACE QUÍMICO ELEMENTOS Y COMPUESTOS. EL Actividades Unidad 3. Realiza un esquema en el que describas brevemente los distintos modelos atómicos que se han sucedido desde Thomson

Más detalles

Resultado: a) K ps = 6,81 10 11 M 4 ; b) No hay precipitado.

Resultado: a) K ps = 6,81 10 11 M 4 ; b) No hay precipitado. PRUEBA GENERAL OPCIÓN A PROBLEMA.- La solubilidad del Cr(OH) 3 es 0,13 mg ml 1 : a) Determina la constante de solubilidad K ps del hidróxido de cromo (III). b) Se tiene una disolución de CrCl 3 de concentración

Más detalles

SÓLIDOS I. Tipos de sólidos. Sólidos cristalinos: los átomos, iones o moléculas se empaquetan en forma ordenada.

SÓLIDOS I. Tipos de sólidos. Sólidos cristalinos: los átomos, iones o moléculas se empaquetan en forma ordenada. SÓLIDOS I Tipos de sólidos Sólidos cristalinos: los átomos, iones o moléculas se empaquetan en forma ordenada. Sólidos amorfos: no presentan estructuras ordenadas. 1 Sólidos cristalinos Hay posiciones

Más detalles

IV.. ENLACES QUÍMICOS

IV.. ENLACES QUÍMICOS IV.. ENLACES QUÍMICOS OBJETIVO.- Identificar los tipos de enlace en la formación de moléculas relacionándolos con sus propiedades y las fuerzas que las unen. 1. CONCEPTO DE ENLACE QUÍMICO Los enlaces químicos,

Más detalles

Conductividad en disoluciones electrolíticas.

Conductividad en disoluciones electrolíticas. Conductividad en disoluciones electrolíticas. 1.- Introducción 2.- Conductores 3.- Definición de magnitudes 3.1- Conductividad específica 3.2 Conductividad molar " 4. Variación de la conductividad (, ")

Más detalles

Fuerzas de Van der Waals. Momento Dipolar

Fuerzas de Van der Waals. Momento Dipolar Momento Dipolar Muchas moléculas eléctricamente neutras, esto es, sin carga neta, poseen una distribución de cargas no homogénea. Esto se debe a que los átomos que las forman tienen diferente electronegatividad,

Más detalles

MOLÉCULAS Y FUERZAS INTERMOLECULARES

MOLÉCULAS Y FUERZAS INTERMOLECULARES 4 MLÉULAS Y UERZAS TERMLEULARES SLUES A LAS ATVDADES DE AL DE UDAD Método RPEV e hibridación 1 Las nubes electrónicas que se dibujan en torno al átomo central en el método RPEV, son una representación

Más detalles

TEMA 3: ENLACE QUÍMICO

TEMA 3: ENLACE QUÍMICO I.E.S. Al-Ándalus. Dpto. de Física y Química. Curso 2004-05 FQ 1º Bach. Tema 3. Enlace Químico - 1 - TEMA 3: ENLACE QUÍMICO 3.1 Estabilidad atómica. Regla del Octete de Lewis 3.2 Enlace iónico. Propiedades

Más detalles

ESTRUCTURA ATÓMICA Y CLASIFICACIÓN PERIÓDICA DE LOS ELEMENTOS

ESTRUCTURA ATÓMICA Y CLASIFICACIÓN PERIÓDICA DE LOS ELEMENTOS Química P.A.U. ESTRUCTURA ATÓMICA Y CLASIFICACIÓN PERIÓDICA DE LOS ELEMENTOS 1 ESTRUCTURA ATÓMICA Y CLASIFICACIÓN PERIÓDICA DE LOS ELEMENTOS CUESTIONES NÚMEROS CUÁNTICOS 1. a) Indique el significado de

Más detalles

Tema 4 Orbítales Moleculares. Hibridación

Tema 4 Orbítales Moleculares. Hibridación Tema 4 Orbítales Moleculares Orbital atómico s, p (d y f) Los orbitales atómicos se mezclan para formar nuevos orbitales híbridos hibridación o hibridización orbitales híbridos sp 3, sp 2 y sp Se altera

Más detalles

Los electrones, especialmente los que están en la capa más externa o de valencia, juegan un papel fundamental en el enlace químico.

Los electrones, especialmente los que están en la capa más externa o de valencia, juegan un papel fundamental en el enlace químico. El enlace químico Los electrones, especialmente los que están en la capa más externa o de valencia, juegan un papel fundamental en el enlace químico. En algunos casos se trasfieren electrones de un átomo

Más detalles

Agua. Agua. Estructura del agua. Estructura del agua. Estructura del agua. Dra. Edith Ponce A. enlace covalente polar (100 kcal/mol).

Agua. Agua. Estructura del agua. Estructura del agua. Estructura del agua. Dra. Edith Ponce A. enlace covalente polar (100 kcal/mol). Agua Agua Dra. Edith Ponce A. Es la sustancia más abundante en la biosfera la encontramos en sus tres estados comprende del 65 y el 95% del peso de la mayor parte de las formas vivas Sus propiedades físicas

Más detalles

III. ESTADOS DE LA MATERIA

III. ESTADOS DE LA MATERIA III. ESTADOS DE LA MATERIA Fuerzas Intermoleculares Las fuerzas intermoleculares Son fuerzas de atracción entre las moléculas y son mas débiles que las fuerzas intramoleculares (enlaces químicos). Ejercen

Más detalles

Tema 8. Enlace químico y propiedades de las sustancias

Tema 8. Enlace químico y propiedades de las sustancias Clasificación de las sustancias en estado sólido En estado sólido es el único en el que se pueden encontrar los cuatro tipos de sustancias en condiciones estándar, es decir, a 25ºC y una atmósfera. Las

Más detalles

b) Para el último electrón del átomo de magnesio, los números cuánticos posibles son: n = 3; l = 1 ±.

b) Para el último electrón del átomo de magnesio, los números cuánticos posibles son: n = 3; l = 1 ±. PRUEBA GENERAL OPCIÓN A CUESTIÓN 1.- Considerando el elemento alcalinotérreo del tercer período y el segundo elemento del grupo de los halógenos: a) Escribe sus configuraciones electrónicas. b) Escribe

Más detalles

Química P.A.U. ENLACE QUÍMICO 1 ENLACE QUÍMICO

Química P.A.U. ENLACE QUÍMICO 1 ENLACE QUÍMICO Química P.A.U. ENLAE QUÍMIO 1 ENLAE QUÍMIO UESTIONES ENLAE IÓNIO 1. ontesta razonadamente uál de los siguientes compuestos tendrá mayor punto de fusión: fluoruro de sodio o bromuro de potasio? (P.A.U.

Más detalles

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo GEOMETRÍA MOLECULAR Lic. Lidia Iñigo Hemos dicho al estudiar uniones químicas que un enlace covalente es polar cuando existe cierta diferencia de electronegatividad entre los átomos que se unen. La magnitud

Más detalles

POR QUÉ SE UNEN LOS ÁTOMOS? TIPOS DE ENLACES

POR QUÉ SE UNEN LOS ÁTOMOS? TIPOS DE ENLACES EL ENLACE QUÍMICO CONTENIDOS 1.- Por qué se unen los átomos? Tipos de enlace. 2.- Enlace iónico. 2.1. Energía reticular. 2.2. Ciclo de Born-Haber. 2.3. Estructura cristalina de los compuestos iónicos.

Más detalles

Estado Sólido. Estado Sólido. Estado Sólido. Estado Sólido - + Sólidos cristalinos y sólidos amorfos

Estado Sólido. Estado Sólido. Estado Sólido. Estado Sólido - + Sólidos cristalinos y sólidos amorfos Sólidos cristalinos y sólidos amorfos Sólidos cristalinos: presentan un ordenamiento regular en el espacio Sólidos amorfos: no presentan el ordenamiento típico de los cristalinos Región cristalina Región

Más detalles

JULIO 2012. FASE ESPECÍFICA. QUÍMICA.

JULIO 2012. FASE ESPECÍFICA. QUÍMICA. JULIO 2012. FASE ESPECÍFICA. QUÍMICA. OPCIÓN A 1. (2,5 puntos) Se añaden 10 mg de carbonato de estroncio sólido, SrCO 3 (s), a 2 L de agua pura. Calcule la cantidad de SrCO 3 (s) que queda sin disolver.

Más detalles

El enlace covalente se explica mediante la Teoría del Orbital Molecular (TOM).(Bueno para moléculas sencillas, complicado para las complejas).

El enlace covalente se explica mediante la Teoría del Orbital Molecular (TOM).(Bueno para moléculas sencillas, complicado para las complejas). . Aplicación de la Teoría de Grupos. Moléculas triatómicas lineales y angulares. Moléculas mono y bidimensionales. Moléculas poliédricas sencillas. Objetivos: Recordar los conceptos generales del enlace

Más detalles

ESTRUCTURAS CRISTALINAS (P2)

ESTRUCTURAS CRISTALINAS (P2) ESTRUCTURAS CRISTALINAS (P2) Objetivos - Visualización de estructuras de sólidos mediante el uso de modelos - Estudio de redes cristalinas basadas en ordenamientos de esferas de igual tamaño - Identificación

Más detalles

Ablandamiento de agua mediante el uso de resinas de intercambio iónico.

Ablandamiento de agua mediante el uso de resinas de intercambio iónico. Ablandamiento de agua por intercambio iónica página 1 Ablandamiento de agua mediante el uso de resinas de intercambio iónico. (Fuentes varias) Algunos conceptos previos: sales, iones y solubilidad. Que

Más detalles

3.1. ÁCIDOS Y BASES. HA (ac) H + (ac) + A - (ac)

3.1. ÁCIDOS Y BASES. HA (ac) H + (ac) + A - (ac) 3.1. ÁCIDOS Y BASES Según la teoría de Arrhenius, ácido es toda sustancia capaz de dar iones hidrógeno (H ) como uno de sus productos iónicos de disociación en agua : HA H A - El ion H, denominado protón

Más detalles

REACCIONES DE TRANSFERENCIA DE ELECTRONES (electrolisis)

REACCIONES DE TRANSFERENCIA DE ELECTRONES (electrolisis) REACCIONES DE TRANSFERENCIA DE ELECTRONES (electrolisis) 1 2 Electrólisis Aplicando una f.e.m. adecuada se puede conseguir que tenga lugar una reacción redox en el sentido que no es espontánea. En una

Más detalles

Capítulo 9. Estados de agregación de la materia

Capítulo 9. Estados de agregación de la materia Capítulo 9. Estados de agregación de la materia Objetivos: Establecer las características químico-físicas de gases, líquidos y sólidos. Establecer la ecuación de estado de los gases ideales y describir

Más detalles

Contenidos temáticos desarrollados por: Lic. Maria Irene Vera Profesor Adjunto

Contenidos temáticos desarrollados por: Lic. Maria Irene Vera Profesor Adjunto Facultad de Ciencias Exactas y Naturales y Agrimensura Universidad Nacional del Nordeste Avenida Libertad 5450-3400. Corrientes TE: (03783)457996- Int. 105 QUÍMICA GENERAL Unidad IV: Enlaces Químicos Contenidos

Más detalles

ESTADO SOLIDO. Propiedades 03/07/2012. Fuerte interacción entre partículas

ESTADO SOLIDO. Propiedades 03/07/2012. Fuerte interacción entre partículas ESTADO SOLIDO Propiedades Fuerte interacción entre partículas Ocupan posiciones relativamente fijas las partículas vibran Tienen forma propia y definida Son prácticamente incompresibles No difunden entre

Más detalles

La geometría molecular viene dada por la distribución de los átomos periféricos unidos al átomo central.

La geometría molecular viene dada por la distribución de los átomos periféricos unidos al átomo central. Estructuras moleculares: Modelo VSPR (RPECV) Las estructuras de Lewis son útiles para establecer la distribución de los pares electrónicos en las moléculas pero no aportan nada sobre su previsible geometría.

Más detalles

Enlace químico II: geometría molecular e hibridación de orbitales atómicos

Enlace químico II: geometría molecular e hibridación de orbitales atómicos Teorías de cómo ocurren los enlaces Enlace químico II: geometría molecular e hibridación de orbitales atómicos Capítulo 10 Teoría de enlace de valencia Teoría de orbitales moleculares Copyright The McGraw-Hill

Más detalles

QUÍMICA. AgNO 3 (ac) Ag + (ac) + NO 3 - (ac) (0,25 puntos) 0,1 M 0,1 M 0,1 M. (0,25 puntos)

QUÍMICA. AgNO 3 (ac) Ag + (ac) + NO 3 - (ac) (0,25 puntos) 0,1 M 0,1 M 0,1 M. (0,25 puntos) OPCIÓN A QUÍMICA 1. (2,5 puntos) Se analiza una muestra de 10 ml de una disolución acuosa que contiene ión cloruro, Cl -, mediante la adición de una gota (0,2 ml) de disolución acuosa de nitrato de plata,

Más detalles

PSU QUIMICA 2010 RAOV - CYQ

PSU QUIMICA 2010 RAOV - CYQ 1 PSU QUIMICA 2010 RAOV - CYQ 2 NUMERO ATOMICO Y NUMERO MASICO 1.- Si los átomos A, B y C presentan la siguiente cantidad de partículas subatómicas: A.- 12 protones, 14 neutrones, 12 electrones B.- 12

Más detalles

Química 2º bachillerato EL ENLACE QUÍMICO

Química 2º bachillerato EL ENLACE QUÍMICO EL ENLACE QUÍMICO 1. - Enlace químico. Tipos. 2. - Enlace iónico. 2.1. Valencia iónica. 2.2. Cristales iónicos. Índice de coordinación. 2.3. Energía reticular. Ciclo de Born-aber. 2.4. Propiedades de los

Más detalles

UNIVERSIDAD DE ZARAGOZA - PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO - CURSO 2013-2014

UNIVERSIDAD DE ZARAGOZA - PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO - CURSO 2013-2014 UNIVERSIDAD DE ZARAGOZA - PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO - CURSO 2013-2014 QUÍMICA Plan de Estudios del Real Decreto 1467/2007, de 2 de noviembre (BOE de 6 de noviembre)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva 4, Ejercicio, Opción B Septiembre,

Más detalles

UNIDAD EDUCATIVA INTERNACIONAL SEK - ECUADOR PROGRAMA ESPECIAL DE QUÍMICA

UNIDAD EDUCATIVA INTERNACIONAL SEK - ECUADOR PROGRAMA ESPECIAL DE QUÍMICA UNIDAD EDUCATIVA INTERNACIONAL SEK - ECUADOR PROGRAMA ESPECIAL DE QUÍMICA I. DATOS INFORMATIVOS: NIVEL DE EDUCACIÓN: Bachillerato ÁREA: Ciencias Experimentales GRADO/CURSO: Segundo de bachillerato PAARALELO:

Más detalles

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL Francisco Javier Navas Pineda [email protected] Tema 5. Estados de agregación de la materia 1 ÍNDICE 1. Los Estados de la Materia 2. Estado Sólido. Tipos

Más detalles

Tema 2 Estructuras Cristalinas

Tema 2 Estructuras Cristalinas Tema 2 Estructuras Cristalinas Para poder comprender las propiedades de los materiales, y poder por tanto seleccionar el material idóneo para una aplicación específica, se hace necesario comprender la

Más detalles

XXIII OLIMPIADA NACIONAL DE QUÍMICA SEVILLA, 1 Y 2 DE MAYO 2010 EXAMEN DE PROBLEMAS

XXIII OLIMPIADA NACIONAL DE QUÍMICA SEVILLA, 1 Y 2 DE MAYO 2010 EXAMEN DE PROBLEMAS EXAMEN DE PROBLEMAS PROBLEMA 1. LOS ÓXIDOS DE NITRÓGENO. IMPACTO AMBIENTAL El oxígeno y el nitrógeno se combinan formando varios compuestos químicos gaseosos que reciben el nombre genérico de "óxidos de

Más detalles

TEMA 5: MODELOS ATÓMICOS

TEMA 5: MODELOS ATÓMICOS TEMA 5: MODELOS ATÓMICOS La pequeña historia del átomo es un ejemplo magnífico del MÉTODO CIENTÍFICO: se idean modelos de como creemos que es la realidad, que son válidos si explican hechos conocidos y

Más detalles

JULIO 2012. FASE GENERAL QUÍMICA

JULIO 2012. FASE GENERAL QUÍMICA OPCIÓN A JULIO 2012. FASE GENERAL QUÍMICA 1. (2,5 puntos) A partir de los siguientes datos de energías de ruptura de enlaces (ED): Molécula Enlaces ED (kj mol -1 ) H 2 H H 436 N 2 N N 946 NH 3 N-H 389

Más detalles

Apuntes de Electroquímica

Apuntes de Electroquímica La teoría desarrollada por Arrhenius con motivo de su tesis doctoral y depurada más tarde por él mismo en 887 describe fielmente el comportamiento de los electrolitos débiles. Sin embargo, los electrolitos

Más detalles

Enlace químico PAU- Ejercicios resueltos

Enlace químico PAU- Ejercicios resueltos Enlace químico PAU- Ejercicios resueltos 2015-Modelo Pregunta A1. Para las sustancias HF, Fe, KF y BF3, justifique: a) El tipo de enlace presente en cada una de ellas. b) Qué sustancia tendrá menor punto

Más detalles

CARACTERÍSTICAS DE LA MATERIA

CARACTERÍSTICAS DE LA MATERIA LA MATERIA CARACTERÍSTICAS DE LA MATERIA - Todo lo que existe en el universo está compuesto de Materia. - La Materia se clasifica en Mezclas y Sustancias Puras. - Las Mezclas son combinaciones de sustancias

Más detalles

ÁTOMOS Y MOLÉCULAS. El modelo atómico de Dalton no logra explicar los fenómenos eléctricos.

ÁTOMOS Y MOLÉCULAS. El modelo atómico de Dalton no logra explicar los fenómenos eléctricos. ÁTOMOS Y MOLÉCULAS Un modelo científico es una representación aproximada de la realidad que es capaz de explicar todas las observaciones realizadas hasta el momento sobre un fenómeno determinado y que

Más detalles

Tema 3. (Parte 1) Enlace químico y propiedades de las sustancias

Tema 3. (Parte 1) Enlace químico y propiedades de las sustancias Tema 3. (Parte 1) Enlace químico y propiedades de las sustancias ÍNDICE 3.1. Enlace y estabilidad energética 3.2. Enlace iónico Energía de red Ciclo de Born-Haber Propiedades de las sustancias iónicas

Más detalles

La Absorción del Agua

La Absorción del Agua La Absorción del Agua Importancia del Agua en las Plantas Es el cons5tuyente principal del protoplasma celular, en ocasiones representa hasta el 95% del peso total de la planta. Es el solvente en el que

Más detalles

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge INTRODUCCIÓN AL ESTUDIO DE LA FISIOLOGÍA La Fisiología General es una parte de las Ciencias Fisiológicas encargada de estudiar las bases de funcionamiento de los seres vivos. Apoyándose en las leyes y

Más detalles

Líquidos Tensión superficial, viscosidad, presión de vapor. Sólidos Sólidos covalentes, iónicos, moleculares y metálicos

Líquidos Tensión superficial, viscosidad, presión de vapor. Sólidos Sólidos covalentes, iónicos, moleculares y metálicos Fuerzas intermoleculares Estados de agregación de la materia Gases Gases ideales y reales Líquidos Tensión superficial, viscosidad, presión de vapor Sólidos Sólidos covalentes, iónicos, moleculares y metálicos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción B Reserva 1, Ejercicio 2, Opción A Reserva, Ejercicio 2, Opción A Reserva 4, Ejercicio, Opción B

Más detalles

CÁTEDRA DE QUÍMICA GENERAL E INORGÁNICA GUIA DE ESTUDIO Nº 3 ENLACE QUÍMICO

CÁTEDRA DE QUÍMICA GENERAL E INORGÁNICA GUIA DE ESTUDIO Nº 3 ENLACE QUÍMICO GUIA DE ESTUDIO Nº 3 1. Define enlace químico. ENLACE QUÍMICO 2. Qué son los electrones de valencia? Cuántos electrones de valencia posee un átomo de nitrógeno? 3. Analiza la siguiente configuración electrónica

Más detalles

2003, Ernesto de Jesús Alcañiz

2003, Ernesto de Jesús Alcañiz 2003, Ernesto de Jesús Alcañiz 5 Gases y líquidos 5.1 La teoría cinético-molecular de los gases 5.2 Predicciones de la teoría cinético-molecular 5.3 Los gases reales: ecuación de Van der Waals 5.4 Propiedades

Más detalles

LECTURA PROPIEDADES DE LAS SALES

LECTURA PROPIEDADES DE LAS SALES LECTURA PROPIEDADES DE LAS SALES Podemos decir que las sales son compuestos que se forman cuando un catión (ion metálico o un ion poliatómico positivo) remplaza a uno o más de los iones hidrógeno de un

Más detalles

TEMA 1: NOCIONES DE ESTADO SÓLIDO. La importancia de la estructura, el enlace y los estados electrónicos sobre las propiedades del material

TEMA 1: NOCIONES DE ESTADO SÓLIDO. La importancia de la estructura, el enlace y los estados electrónicos sobre las propiedades del material TEMA 1: NOCIONES DE ESTADO SÓLIDO La importancia de la estructura, el enlace y los estados electrónicos sobre las propiedades del material Sólido: Substancias elásticas rígidas, es decir, substancias que

Más detalles

ESTRUCTURA DE LA MATERIA QCA 07 ANDALUCÍA

ESTRUCTURA DE LA MATERIA QCA 07 ANDALUCÍA 1.- Dados los conjuntos de números cuánticos: (2,1,2, ½); (3,1, 1, ½); (2,2,1, -½); (3,2, 2, ½) a) Razone cuáles no son permitidos. b) Indique en qué tipo de orbital se situaría cada uno de los electrones

Más detalles

Cómo se unen los átomos

Cómo se unen los átomos Nivel: 2.º Medio Subsector: Ciencias químicas Unidad temática: Los cuerpos presentan aspectos y propiedades diferentes según el tipo de átomos que los componen y según la forma en que estos se unen. Pensemos

Más detalles

La electrólisis CONTENIDOS. Electrolitos. Iones. Carga eléctrica negativa. www.codelcoeduca.cl

La electrólisis CONTENIDOS. Electrolitos. Iones. Carga eléctrica negativa. www.codelcoeduca.cl La electrólisis Las moléculas de ciertos compuestos químicos, cuando se encuentran en disolución acuosa, presentan la capacidad de separarse en sus estructuras moleculares más simples y/o en sus átomos

Más detalles

ENLACE QUÍMICO 2º BACH EJERCICIOS DE ENLACE QUÍMICO DEL LIBRO 28. H-CHO H C = O : CH 3 OH H C O H H H H C O C H H H CH 3 OCH 3

ENLACE QUÍMICO 2º BACH EJERCICIOS DE ENLACE QUÍMICO DEL LIBRO 28. H-CHO H C = O : CH 3 OH H C O H H H H C O C H H H CH 3 OCH 3 EJERCICIOS DE ENLACE QUÍMICO DEL LIBRO 28. -CO C = O : C 3 O C O C 3 OC 3 C O C a) La longitud de enlace CO es menor en el formaldehido, ya que tiene un doble enlace. b) El metanol puede formar enlaces

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Un ion es un átomo o grupo de átomos cargado eléctricamente. Un ion positivo es un catión y un ion negativo es un anión.

Un ion es un átomo o grupo de átomos cargado eléctricamente. Un ion positivo es un catión y un ion negativo es un anión. LOS IONES Los iones son componentes esenciales de la materia tanto inerte como viva. Son partículas con carga eléctrica neta que participan en un buen número de fenómenos químicos. A la temperatura ambiente,

Más detalles

TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO)

TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) Existen 2 clases de electrización, la positiva (que se representa con + ), y la negativa (que se representa con - ). Hay una partícula

Más detalles

Programa: Química. Temario de Exámenes. Departamento de Estudios de Posgrado Coordinación Académica CIMAV Unidad Monterrey

Programa: Química. Temario de Exámenes. Departamento de Estudios de Posgrado Coordinación Académica CIMAV Unidad Monterrey Programa: Química Departamento de Estudios de Posgrado Coordinación Académica CIMAV Unidad Monterrey I. Fundamentos de Química a. Materia y energía b. Estados de la materia c. Propiedades y cambios fisicoquímicos

Más detalles

Electrólisis. Electrólisis 12/02/2015

Electrólisis. Electrólisis 12/02/2015 Electrólisis Dr. Armando Ayala Corona Electrólisis La electrolisis es un proceso mediante el cual se logra la disociación de una sustancia llamada electrolito, en sus iones constituyentes (aniones y cationes),

Más detalles

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia. INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA 1. Qué es la Química Física? "La química física estudia los principios que gobiernan las propiedades el comportamiento de los sistemas químicos" El estudio de los

Más detalles

REACCIONES QUÍMICAS EN SOLUCIÓN ACUOSA (P11)

REACCIONES QUÍMICAS EN SOLUCIÓN ACUOSA (P11) REACCIONES QUÍMICAS EN SOLUCIÓN ACUOSA (P11) Objetivos - Estudio del comportamiento químico de iones de metales de transición 3d en solución acuosa - Estudio del comportamiento químico de los halógenos

Más detalles

METODO RPECV 1º BACHILLERATO

METODO RPECV 1º BACHILLERATO METODO RPECV 1º BACHILLERATO La geometría molecular es el resultado de la distribución tridimensional de los átomos en la molécula, y viene definida por la disposición espacial de los núcleos atómicos.

Más detalles

Maestro: Especialidad: Educación Primaria ENLACE QUÍMICO. Fundamentos y Didáctica de la Física y la Química

Maestro: Especialidad: Educación Primaria ENLACE QUÍMICO. Fundamentos y Didáctica de la Física y la Química Maestro: Especialidad: Educación Primaria ENLACE QUÍMICO Fundamentos y Didáctica de la Física y la Química Según la regla del octeto, una de las estructuras más estables de los elementos es tener ocho

Más detalles

TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR

TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR Tema 5 Simetría Molecular 1 TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR La simetría de una molécula determina muchas de sus propiedades e incluso determina cómo se producen algunas reacciones. El estudio

Más detalles

Unidad 3 Enlace químico Moléculas y Fuerzas Intermoleculares

Unidad 3 Enlace químico Moléculas y Fuerzas Intermoleculares Unidad 3 Enlace químico Moléculas y Fuerzas Intermoleculares Enlace químico Cómo se unen los átomos? Cualquier teoría que de contestación a esta pregunta ha de explicar: Los diferentes tipos de enlace

Más detalles

REACCIONES DE PRECIPITACIÓN

REACCIONES DE PRECIPITACIÓN TEMA 12 REACCIONES DE PRECIPITACIÓN Las reacciones de disolución/precipitación en las que un sólido pasa a la disolución o viceversa afectan profundamente la ecología de ríos, lagos y océanos ya que controlan

Más detalles

Tema 2. El enlace iónico

Tema 2. El enlace iónico Tema 2. El enlace iónico Curiosidad Quizás la sustancia química más conocida por la gente después del agua, de algunos metales y del oxígeno, sea la sal común. Aunque popularmente se la conoce por sal,

Más detalles

PRINCIPIOS TEÓRICOS ENLACE QUÍMICO TIPOS DE ENLACES

PRINCIPIOS TEÓRICOS ENLACE QUÍMICO TIPOS DE ENLACES TABLA DE CONTENIDOS Carátula 1 Tabla de Contenidos 3 Introducción 4 Objetivos 5 Principios Teóricos 6 6 Tipos de Enlaces 6 Enlace Iónico 7 Estructuras de los compuestos iónicos 8 Enlace Covalente 11 Enlace

Más detalles

El Agua. 2H2O(l) 2H2 (g) +O2 (g) Puentes de hidrogeno

El Agua. 2H2O(l) 2H2 (g) +O2 (g) Puentes de hidrogeno El Agua. El agua es un compuesto covalente, formado por Hidrógeno y Oxígeno (H 2 O).Puesto que el Oxígeno es mas covalente que el Hidrógeno, el enlace O-H es covalente polar. La electrolisis (aplicación

Más detalles

3º de E.S.O. Física y Química Ejercicios de repaso para septiembre 2

3º de E.S.O. Física y Química Ejercicios de repaso para septiembre 2 IES EL ESCORIAL 3º de ESO Física y Química Ejercicios de repaso para septiembre 2 Apellidos: Nombre: Curso: Fecha: 1 Indica para los siguientes científicos Dalton, Thomson, Rutherford y Bohr, sus descubrimientos

Más detalles

2/17/2013. La fuerza que mantiene unidos a los átomos de unamolécula. Es una fuerza química o intramolecular.

2/17/2013. La fuerza que mantiene unidos a los átomos de unamolécula. Es una fuerza química o intramolecular. FUERZAS INTERMOLECULARES Comparación molecular de gases, líquidos y sólidos Viscosidad y tensión superficial Cambios de fase Volatilidad, presión de vapor y punto de ebullición Fuerzas intramoleculares

Más detalles

Teoría de Orbitales Moleculares

Teoría de Orbitales Moleculares QI1A Química Moderna Profesor Cátedra: Sr. Ricardo Letelier Profesor Auxiliar: Magín Torres Los orbitales moleculares se forman por una combinación lineal de orbitales atómicos. Como los orbitales atómicos

Más detalles

Tema 5. Espectroscopias: Infrarroja, Ultravioleta-Visible, Absorción y Emisión Atómica

Tema 5. Espectroscopias: Infrarroja, Ultravioleta-Visible, Absorción y Emisión Atómica Tema 5. Espectroscopias: Infrarroja, Ultravioleta-Visible, Absorción y Emisión Atómica 5.1 Introducción 5.2 Espectroscopía del Infrarrojo (IR). 5.2.1 Fundamentos 5.2.2 Descripción de la técnica 5.2.3 Interpretación

Más detalles

En los casos de átomos que poseen pocos electrones (H, Li, K,..), la estabilidad se consigue alcanzando la estructura de gas noble, Helio ( 1s 2 ).

En los casos de átomos que poseen pocos electrones (H, Li, K,..), la estabilidad se consigue alcanzando la estructura de gas noble, Helio ( 1s 2 ). ENLACE QUÍMICO Ya sabemos que los cuerpos en la naturaleza, tienden a la mínima Energía Potencial ; dicho de otra forma, tienden a la máxima estabilidad. Los átomos constituyentes de la materia no son

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 QUÍMICA TEMA : ENLACES QUÍMICOS Reserva 1, Ejercicio 5, Opción A Reserva 1, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva

Más detalles
Sitemap