El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios."

Transcripción

1 TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot entre los depósitos de temperatura T 1 = 800 [ C] y T 2 = 25 [ C]. Se sabe que utiliza 1.2 [mol] de aire y que durante la expansión isotérmica a la temperatura superior, el volumen que alcanza es el doble del volumen inicial. Considerando que la presión máxima en el ciclo es [Pa], determine: a) El calor durante el proceso de la expansión isotérmica. Indique si entra o sale del aire. b) El trabajo neto que entrega el ciclo. Respuestas: Q = [J] ; entra al sistema W = [J] 2. Suponga que 0.2 [mol] de un gas ideal efectúan un ciclo de Carnot con temperaturas de 227 [ C] y 27 [ C]. La presión al inicio de la expansión isotérmica es P 1 = 10 [bar] y, en este proceso, el volumen se duplica. a) Dibuje la gráfica que relaciona a la presión en función del volumen, es decir P = f (V). b) Complete la tabla siguiente: proceso {Q} en [J] {W} en [J] U en [J] En un ciclo de refrigeración por compresión de un vapor que opera con tetrafluoroetano (refrigerante R 134a) se sabe que este último entra en el compresor a 10 [ C], 2 [bar] y h = 241 [kj/kg], sale a 16 [bar] y h = 295 [kj/kg]. Sabiendo que entra a la válvula de expansión con una entalpia específica de 134 [kj/kg], determine: a) Los calores referidos a la unidad de masa en el evaporador y en el condensador-enfriador. b) La potencia del compresor si el gasto másico fue 15 [kg/s]. c) El coeficiente de operación del ciclo. 4. El motor eléctrico de un refrigerador de 2 toneladas necesita 3 [kw], determine:

2 a) La cantidad de calor, en cada unidad de tiempo, que se envía al entorno. b) El rendimiento del refrigerador. Solución: a) {Q} cond = [kw] b) = [1] 5. En un ciclo de Rankine básico, como el que se muestra en la figura, se sabe que el agua entra en la caldera a 75 [bar] y una entalpia específica de [kj/kg]; entra en la bomba a 0.08 [bar], [m 3 /kg] y [ C], entra en la turbina como vapor saturado y seco (v = [m 3 /kg], u = [kj/kg] ). La turbina produce [kj/kg]; determine, sin despreciar el trabajo en la bomba: a) El calor, referido a la unidad de masa, que se le proporciona al agua en la caldera. b) El trabajo, referido a la unidad de masa, que entrega el ciclo. Respuestas a) {q} sum = [kj/kg] b) {w} neto = [kj/kg] 6. En un ciclo de Rankine básico, el agua entra en la turbina a 25 [bar] y sale a 1 [bar], entra en la bomba con una densidad de 10 3 [kg/m 3 ] como líquido saturado y en la caldera recibe [kj/kg]. Si la eficiencia del ciclo es 0.3, determine el trabajo, asociado a cada unidad de masa, de la bomba y de la turbina. Considere que ambos equipos son adiabáticos y que las variaciones de energía cinética y potencial gravitatoria son despreciables. Respuestas a) {w} bomba = 2.4 [kj/kg] b) {w} turbina = [kj/kg] 7. Una máquina de combustión interna opera con un ciclo de Diesel ideal con aire como fluido de trabajo (R = 287 [J/(kg K)], k = 1.4). El gas se recibe a 78 [kpa] y 20 [ C], la relación de compresión es 15, la temperatura máxima y la presión máxima alcanzada por el fluido es [ C] y [MPa] respectivamente, determine, en el SI: a) El volumen específico del aire al final de la compresión adiabática, es decir su volumen específico mínimo. b) El calor, referido a la unidad de masa, que se transmite al gas en el proceso a presión constante. c) El calor, referido a la unidad de masa, cedido por el fluido en el proceso a volumen constante. Respuestas a) v = [m 3 /kg], b) { 2 q 3 } = [kj/kg] c) { 4 q 1 } = [kj/kg]

3 8. En un ciclo de Otto ideal que funciona con aire (k = 1.4 y c P = 1004 [J/(kg K)] ) que tiene una relación de compresión r = 8, se tiene que el estado del aire al inicio del proceso de compresión está definido por 10 5 [Pa] y 15 [ C]. Si durante el proceso de adición de energía en forma de calor, cada kilogramo de aire recibe [J], determine la temperatura y presión máximas. T máx = [K] P máx = [kpa] 9. Un ciclo de Diesel que funciona con aire, en un ciclo reversible, tiene una relación de compresión r. El gas tiene una temperatura de 26 [ C] al inicio de la compresión adiabática y, al final de la misma, llega a 611 [ C] y 0.5 [m 3 /kg]. Si después de la expansión isobárica la temperatura que alcanza el fluido es [ C], determine para dicha expansión: a) El volumen específico final del gas. b) El cambio de entropía específica. Respuestas a) v = [m 3 /kg] b) s = [J/(kg K)] 10. En un ciclo de Brayton ideal se suministra aire al compresor a una presión (P 1 ) de 1 [bar] y a la temperatura (T 1 ) de 40 [ C]. Si la relación de presiones es 5, la temperatura del aire a la salida del compresor (T 2 ) es [K], la temperatura a la salida de la turbina (T 4 ) es [K] y a la entrada de la turbina (T 3 ) es 800 [ C], determine: a) El calor suministrado y el calor rechazado, de cada unidad de masa, en el ciclo. b) El trabajo, en cada unidad de masa, neto en el ciclo. c) La eficiencia del ciclo. d) El cambio de entropía específica en cada proceso. 11. En el diagrama se muestra un ciclo ideal y reversible de Brayton que utiliza aire. La relación de presiones es de 5 y la temperatura a la entrada de la turbina es T 3 = 900 [ C]; se sabe que la presión y la temperatura del aire a la entrada del compresor son P 1 = 10 5 [Pa] y T 1 = 40 [ C] respectivamente. Determine para el ciclo: a) El volumen específico del aire a la entrada y a la salida del quemador. b) El trabajo, asociado a cada unidad de masa, que recibe el compresor. Respuestas: a) v 2 = [m 3 /kg], v 3 = [m 3 /kg]; b) 1 w 2 = [J/kg] 12. Se tiene un ciclo de Otto ideal, con 100 [g] de aire y una relación de compresión de 7.6 [1]. Las condiciones al inicio de la compresión son: 1 [bar] y 36 [ C]. Se le suministra al ciclo 120 [kj], determine las presiones y las temperaturas en cada estado de la gráfica.

4 P 10 Pa ; P MPa P MPa P kpa T K,T K,T K T K 13. Una tobera adiabática recibe aire en forma estable a 300 [kpa], 200 [ C] y 30 [m/s] y sale a 100 [kpa] y 180 [m/s]. Si el área a la entrada es de 80 [cm 2 ] obtenga el área a la salida en [cm 2 ]. Considere para el aire R = [J/(g K)], k = 1.39 [1]. A 2 = [cm 2 ] 14. Ingresa a un difusor un flujo de R 134 A, como vapor saturado a 700 [kpa] y 110 [m/s]. El refrigerante absorbe 3.5 [kw] de calor al pasar por el difusor, en la descarga presenta [kpa] y 46 [ C]. Si el área de salida es 75% mayor que la de entrada, calcule en [kg/s] el flujo del refrigerante. m Las condiciones de entrada a una turbina adiabática que maneja vapor de agua son 4 [MPa] y 400 [ C]; cuando se alcanzan 16 [bar] y 250 [ C] se extrae cierta cantidad de vapor, equivalente al 20% del original para calentar el agua que entra a una caldera; el resto sale de la turbina a 30 [kpa] con una humedad del 10%. Si la turbina produce 7.5 [MW], calcule en [kg/s] el flujo de vapor en su entrada. m En la salida de un compresor requiere que un gas ( R = [kj/(kg K)], k=1.4 ) tenga 180 [ C] y 550 [kpa]. Si el gas ingresa al compresor a 101 [kpa], 20 [ C] y 5 [m/s] por un conducto de 28 [cm de diámetro, presentándose una disipación calorífica de 240 [kj/min], calcule en [kw] la potencia requerida por el compresor. W 63.4 kw 17. En la descarga de un compresor adiabático se requiere mantener 900 [kpa], para esto, se introducen 0.23 [m 3 /s] de aire a 23 [ C] y [kpa]. Calcule en [hp] la potencia requerida por el compresor. W hp 18. Una turbina de gas utiliza 900 [kg/min] de aire como fluido de trabajo. En la salida de la cámara de combustión el aire alcanza [ C]. El aire que sale de la turbina, se introduce a 100 [m/s] a una

5 tobera adiabática y se descarga por una sección transversal de 1 [m] de diámetro a 850 [K]. Calcule, en [kg/m 3 ], la densidad del aire a la salida de la tobera. = [kg/m 3 ] 19. Una turbina se hace funcionar a carga parcial al pasar por una válvula reductora un suministro de vapor de agua de 0.25 [kg/s] a 1.4 [MPa] y 250 [ C] hasta 1.1 [MPa] antes que entre a la turbina. Si la turbina produce 110 [kw] al descargar el vapor a 10 [kpa], calcule la calidad en la salida de la turbina. x = Una mezcla de líquido-vapor de agua, fluye por una línea de suministro de vapor a [kpa] y es estrangulada hasta 100 [kpa] y 120 [ C]. Determine los volúmenes, en [m 3 /kg], aguas arriba y aguas abajo del estrangulamiento. v 1 = [m 3 /kg] ; v 2 = [m 3 /kg] 21. Se introducen dos corrientes de R134-a a una cámara de mezclado adiabática, la primera a 16 [ C], por otra sección se introduce la segunda corriente de R134-a a 50 [ C]. Si todo el proceso se realiza a 6 [bar] y la primera corriente representa el 25% de la mezcla descargada, calcule, en [ C], la temperatura de esta descarga. T = [ C] 22 Un flujo de refrigerante R134-a a 1 [MPa] y 12 [ C] se mezcla con otro flujo del mismo refrigerante a 1 [MPa] y 60 [ C]. Si la masa del flujo frío es el doble del flujo caliente, determine la calidad del flujo en la salida. x = A un condensador de una termoeléctrica entran [kg/h] de vapor a 25 [kpa] y 93% de calidad. Se va a enfriar con agua de un río cercano pasándola por los tubos ubicados en el interior del condensador. Para evitar la contaminación térmica, el agua de enfriamiento que se descarga al río no debe presentar un incremento mayor de 12 [ C]. Si el vapor debe salir del condensador como líquido saturado, calcule el flujo de agua de enfriamiento, en [kg/s], requerido. m

6 24. Una corriente de 3.6 [kg/s] de R134-a entra a un intercambiador de calor a 140 [kpa] y 0 [ C] y sale a 140 [kpa] y 30 [ C]. El calentamiento se consigue gracias a una corriente de aire ( k = 1.4 ; R = [J/(g K)] ) que entra al intercambiador a 150 [kpa] y 40 [ C] y que sale a 135 [kpa] y 12 [ C]. Calcule el gasto volumétrico de aire en la entrada. V Un flujo de 0.04 [kg/s] de gas entra a 400 [ C] y 120 [kpa] a una turbina y sale a 350 [ C] produciendo un trabajo que se utiliza para accionar un compresor. Al compresor entra aire a 50 [ C] y 100 [kpa], saliendo a 130 [kpa] y [kg/s] Para aprovechar en un proceso de secado la energía que lleva el aire al salir del compresor, a su salida se coloca un intercambiador de calor, del cual el aire proveniente del cambiador sale a 80 [ C]. Al cambiador de calor se le introduce aire por otra sección presentándose en su salida un incremento de 22 [ C]. Despreciando las pérdidas por fricción en la turbina y compresor, y considerando a los gases que entran a la turbina como gas ideal con c p = [kj/(kg K)], determine el flujo, en [kg/s], de aire que se debe introducir en el cambiador de calor para lograr tal proceso. m Por un gasoducto largo, adiabático, de diámetro constante, se transporta gas metano ( c p = [J/(kg K)] ). Si en la entrada presenta 690 [kpa], 50 [ C] y en la salida 345 [kpa], 22 [ C], calcule el incremento, en %, que presentó su velocidad. 86 % 27. Un ciclo de Rankine ideal tiene como límites de presión 50 [kpa] y 10 [MPa], generando 39 [MW] netos. El vapor ingresa en la turbina a 400 [ C] descargándose con una humedad del 21.2 %, la temperatura del agua de enfriamiento ( c agua = [J(kg C)] ) en el condensador se incrementa en 14 [ C]. Calcule, en [kg/s], la cantidad de agua de enfriamiento requerida en él. m En el generador de vapor de un ciclo de Rankine simple, se introduce por una sección, agua a 85 [ C] y 5 [MPa], por otra sección se introducen 3.2 [m 3 /s] de gases de combustión a 400 [ C] y 105 [kpa] enfriándose hasta 110 [ C]. El vapor generado se introduce en la turbina a 350 [ C] y 5 [MPa] descargándolo a 60 [kpa] con una humedad del 10%. Si los gases de combustión se consideran como gas ideal ( c v = [kj/(kg K)], k = ), calcule, en [kw], la potencia generada en la turbina. W kw

7 29. Un refrigerador usa R134-a como fluido de trabajo y opera con el ciclo ideal de refrigeración por la compresión de un vapor. El refrigerante entra al evaporador a 120 [kpa] con una humedad del 70% y sale del compresor a 60 [ C]. Si el compresor consume 450 [W], determine el coeficiente de operación (COP). = Un ciclo por compresión de vapor utiliza R134-a como fluido de trabajo para mantener un cuarto a 24 [ C] rechazando el calor al aire exterior a 40 [ C]. Por otra parte, el cuarto gana calor a través de las paredes y las ventanas a razón de 300 [kj/min], mientras que el calor generado por diversos electrodomésticos es de [W]. El refrigerante entra al compresor a 450 [kpa] como vapor saturado a razón de 120 [ /min] y sale a [kpa] y 55 [ C]. Determine el coeficiente de operación. = Un ciclo de refrigeración opera con 4 [kg/s] de refrigerante 134a. Al final del proceso de estrangulación de tienen 6 [ C] y una calidad del 90%. A la salida del compresor se tienen 40 [ C]. Si la relación de presiones del compresor es y demanda 0.3 [MW], calcule la transferencia de calor, en [kw], que se presenta en el compresor. Q kw 32. Se tiene un ciclo de Carnot que opera con 0.6 [kg] de un gas ideal (c v = [kj/(kg K)], R = [kj/(kg K)] ). Los límites de temperatura del ciclo son 300 [K] y 1050 [K], y las presiones mínima y máxima son 20 [kpa] y 3000 [kpa]. Calcule el trabajo producido, en [kj], durante un ciclo. W neto = [kj] 33. En un ciclo de Otto, el proceso de expansión se realiza con un exponente politrópico n = 1.32, alcanzando 577 [ C]. Si la relación de compresión es de 10 y recibe aire ( R = [kj/(kg K)], k = 1.4 ) a 101 [kpa] y 22 [ C], calcule la eficiencia térmica del ciclo, en %. = 56.2% Nota importante: Salvo que se especifique lo contrario, considere que para el aire, como gas ideal: k = 1.4 y R = [J/(kg K)].

Ciclos de Potencia Curso 2007. Ejercicios

Ciclos de Potencia Curso 2007. Ejercicios Ejercicios Cuando no se indica otra cosa, los dispositivos y ciclos se asumen ideales. En todos los casos, bosqueje los ciclos y realice los diagramas apropiados. Se indican las respuestas para que controle

Más detalles

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3 Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 2 1.1. Representación de sistemas termodinámicos................. 2 1.2. Representación de sistemas termodinámicos.................

Más detalles

17. THERMODYNAMICS OF POWER GENERATION

17. THERMODYNAMICS OF POWER GENERATION 17. THERMODYNAMICS OF POWER GENERATION 17.0. Deducir expresiones analíticas ideales para los rendimientos energéticos de los siguientes motores: a) Ciclo de Carnot. b) Ciclo Otto. c) Ciclo Diesel. d) Ciclo

Más detalles

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA Problema nº 31) [04-03] Considérese una turbina de vapor que funciona con vapor de agua que incide sobre la misma con una velocidad de 60 m/s, a una presión

Más detalles

Problemas de Termotecnia

Problemas de Termotecnia Problemas de Termotecnia 2 o curso de Grado de Ingeniería en Explotación de Minas y Recursos Energéticos Profesor Gabriel López Rodríguez (Área de Máquinas y Motores Térmicos) Curso 2011/2012 Tema 2: Primer

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

PROBLEMAS BLOQUE 4. REFRIGERACIÓN

PROBLEMAS BLOQUE 4. REFRIGERACIÓN PROBLEMAS BLOQUE 4. REFRIGERACIÓN Problema 1 Calcular el COP de refrigeración y las condiciones de funcionamiento de un ciclo frigorífico ideal con régimen seco que funciona con amoniaco (NH3) entre 20

Más detalles

Salida fluido frío. Salida fluido caliente. Flujo paralelo 97,75 ºC Flujo contracorriente 101,99 ºC

Salida fluido frío. Salida fluido caliente. Flujo paralelo 97,75 ºC Flujo contracorriente 101,99 ºC EJERCICIOS RESUELTOS a) Cálculos calor 1. Calcular el diferencial logarítmico de temperatura en un intercambiador a flujo paralelo y flujo contracorriente, sabiendo que las temperaturas son las siguientes:

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo Guía de Ejercicios de Primera Ley de Termodinámica 1.- Entra agua a los tubos de

Más detalles

CAPITULO MONTERREY AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC.

CAPITULO MONTERREY AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC. Curso: Fundamentos de sistemas de refrigeración Duración: 25 horas. Los cursos de refrigeración de ASHRAE Capítulo Monterrey están estructurados de manera seriada cada uno de 5 horas por sesión, centrado

Más detalles

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Entropía s [KJ/Kg.ºK]

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Entropía s [KJ/Kg.ºK] UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 3 CENTRALES TÉRMICAS DE VAPOR CICLO DE RANKINE ALUMNO: AÑO 2015 INTRODUCCIÓN El Ciclo

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles.

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 4: PRIMER PRINCIPIO Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. 1) Se enfría a volumen

Más detalles

CARGAS TÉRMICAS DE REFRIGERACIÓN

CARGAS TÉRMICAS DE REFRIGERACIÓN CARGAS TÉRMICAS DE REFRIGERACIÓN INTRODUCCIÓN Por cálculo de cargas se entiende el proceso de determinar la cantidad de calor que hay que extraer o aportar a un local de unas determinadas características,

Más detalles

PRODUCTO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELTOS

PRODUCTO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELTOS UNIVERSIDAD NACIONAL EXPERIMENAL FRANCISCO DE MIRANDA ÁREA DE ECNOLOGÍA COMPLEJO ACADÉMICO EL SABINO DEPARAMENO DE ENERGÉICA PRODUCO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELOS Periodo: III-2012 Por:

Más detalles

Práctico de Física Térmica 1 ra Parte

Práctico de Física Térmica 1 ra Parte Enunciados Lista 0 Práctico de Física Térmica 1 ra Parte 2.8 * Un kilogramo de nitrógeno diatómico (N 2 con peso molecular de 28) se encuentra dentro de un depósito de 500 litros. Encuentre el volumen

Más detalles

Práctico de Física Térmica 2 da Parte

Práctico de Física Térmica 2 da Parte Enunciados Lista 4 Práctico de Física Térmica 2 da Parte Nota: Los ejercicios 6.16, 6.22 y 6.34 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 6.12* Se propone calentar una casa en

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICERRECTORADO ACADEMICO COMISION CENTRAL DE CURRICULUM

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICERRECTORADO ACADEMICO COMISION CENTRAL DE CURRICULUM UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICERRECTORADO ACADEMICO COMISION CENTRAL DE CURRICULUM PROGRAMA ANALITICO Asignatura: Termodinámica II Código: Unidad I: Mezclas de Gases 0112T Objetivo General:

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

SEXTO SEMESTRE SYLLABUS DE LA ASIGNATURA BALANCE ENERGETICO

SEXTO SEMESTRE SYLLABUS DE LA ASIGNATURA BALANCE ENERGETICO UNIDAD ACADEMICA SANTA CRUZ FACULTAD DE CIENCIAS Y TECNOLOGÍA Ingeniería Ambiental SEXTO SEMESTRE SYLLABUS DE LA ASIGNATURA BALANCE ENERGETICO Elaborado por: Ing. Flaby Castro Muriel Gestión Académica

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA U.N.R. PROGRAMA ANALITICO DE LA ASIGNATURA: Termodinámica y Máquinas Térmicas Código: I-3.18.1 PLAN DE ESTUDIOS: 1999 CARRERA: INGENIERÍA INDUSTRIAL

Más detalles

CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO

CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO 50 CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO En este capítulo se desarrolla la metodología de análisis, cuya aplicación a una central termoeléctrica particular y el análisis de los resultados se llevan

Más detalles

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3 Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 1.1. Representación de sistemas termodinámicos................. 1.. Representación de sistemas termodinámicos.................

Más detalles

TEMA 11. REFRIGERACIÓN

TEMA 11. REFRIGERACIÓN Termodinámica Aplicada Ingeniería Química TEMA. REFRIGERACIÓN TEMA : REFRIGERACIÓN BLOQUE II. Análisis termodinámico de procesos industriales PROCESOS INDUSTRIALES ANÁLISIS PROCESOS CALOR TRABAJO Y POTENCIA

Más detalles

TRIGENERACIÓN EN INDUSTRIAS ALIMENTARIAS

TRIGENERACIÓN EN INDUSTRIAS ALIMENTARIAS TRIGENERACIÓN EN INDUSTRIAS ALIMENTARIAS Índice 1 INTRODUCCIÓN. 1 2 EL PROCESO DE REFRIGERACIÓN POR ABSORCIÓN CON AMONIACO. 2 3 CONEXIÓN DE UNA PRA CON LA PLANTA DE COGENERACIÓN. 3 3.1 Conexión mediante

Más detalles

PROBLEMAS DE TRNSMISIÓN DE CALOR

PROBLEMAS DE TRNSMISIÓN DE CALOR TEMODINAMIA Departamento de Física - UNS arreras: Ing. Industrial y Mecánica POBLEMAS DE TNSMISIÓN DE ALO Ejemplo. Pérdida de calor a través de una pared plana onsidere una pared gruesa de 3 m de alto,

Más detalles

OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA.

OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA. OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA. CRITERIOS GENERALES DE EVALUACIÓN: Se valorarán positivamente las contestaciones ajustadas a las preguntas,

Más detalles

TERMODINÁMICA MICA DORY CANO DÍAZD OBJETIVOS INTRODUCCIÓN. Realizar balances simples. Conocer y aplicar las ecuaciones fundamentales que

TERMODINÁMICA MICA DORY CANO DÍAZD OBJETIVOS INTRODUCCIÓN. Realizar balances simples. Conocer y aplicar las ecuaciones fundamentales que INTRODUCCIÓN TERMODINÁMICA MICA DORY CANO DÍAZD MSc.. Ingeniero Civil Mecánico Junio de 2007 OBJETIVOS Comprender y aplicar los principios y conceptos básicos de la Termodinámica Realizar balances simples

Más detalles

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones.

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. Esquema: TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones....1 1.- Introducción...1 2.- Máquina frigorífica...1

Más detalles

PROBLEMAS DE BALANCES DE ENERGÍA

PROBLEMAS DE BALANCES DE ENERGÍA PROBLEMAS DE BALANCES DE ENERGÍA José Abril Requena 2013 2013 José Abril Requena INDICE Un poco de teoría... 3 Problemas resueltos... 10 Problema 1... 10 Problema 2... 11 Problema 3... 11 Problema 4...

Más detalles

Aspectos Avanzados en Refrigeración y Aire Acondicionado SISTEMAS DE AHORRO Y RECUPERACION DE ENERGÍA EN INSTALACIONES DE CLIMATIACIÓN

Aspectos Avanzados en Refrigeración y Aire Acondicionado SISTEMAS DE AHORRO Y RECUPERACION DE ENERGÍA EN INSTALACIONES DE CLIMATIACIÓN Aspectos Avanzados en Refrigeración y Aire Acondicionado SISTEMAS DE AHORRO Y RECUPERACION DE ENERGÍA EN INSTALACIONES DE CLIMATIACIÓN E.T.S. Ingenieros Industriales Dr. Eloy Velasco Gómez Profesor Titular

Más detalles

Ciclo Joule -Brayton

Ciclo Joule -Brayton Cap. 13 Ciclo Joule -Brayton INTRODUCCIÓN Este capìtulo es similar al del ciclo Rankine, con la diferencia que el portador de energìas es el AIRE, por lo que lo consideraremos como gas ideal y emplearemos

Más detalles

MAQUINAS TÉRMICAS CICLOS TERMODINÁMICOS. Ciclo de gas: La sustancia que lo realiza queda durante el ciclo en estado gas

MAQUINAS TÉRMICAS CICLOS TERMODINÁMICOS. Ciclo de gas: La sustancia que lo realiza queda durante el ciclo en estado gas MAQUINAS TÉRMICAS CICLOS TERMODINÁMICOS CICLOS DE POTENCIA CICLOS DE REGRIGERACIÓN Máquina Térmica Refrigerador, Bomba de calor Ciclo de gas: La sustancia que lo realiza queda durante el ciclo en estado

Más detalles

10. Andalucía. 11. Andalucía. 12. Andalucía. 13. Andalucía.

10. Andalucía. 11. Andalucía. 12. Andalucía. 13. Andalucía. PROBLEMAS DE MOTORES TÉRMICOS. (Os seguintes problemas están tomados de P.P.A.A.U.U. de diferentes Comunidades). 1.Castilla-León 2004. Un motor térmico reversible opera entre un foco a temperatura T y

Más detalles

Caso Real de Ahorro de Costos y de Energía con un Sistema Existente de Refrigeración Industrial de Amoniaco

Caso Real de Ahorro de Costos y de Energía con un Sistema Existente de Refrigeración Industrial de Amoniaco Caso Real de Ahorro de Costos y de Energía con un Sistema Existente de Refrigeración Industrial de Amoniaco German Robledo Latin America Sales Director Vilter Emerson Climate Recupere su calor de condensación

Más detalles

4. ENFRIADORAS DE AGUA

4. ENFRIADORAS DE AGUA 4. ENFRIADORAS DE AGUA El estudio s enfriadoras que se realiza a continuación se centra en los datos de los catálogos técnicos de tres marcas comerciales: Carrier, Daikin e Hitachi. En el Anexo, se adjuntan

Más detalles

REFRIGERACIÓN Y CALEFACCIÓN

REFRIGERACIÓN Y CALEFACCIÓN REFRIGERACIÓN Y CALEFACCIÓN Pedro Fernández Díez Equipos de refrigeración y bomba de calor.i.-0 REFRIGERACIÓN Equipos de refrigeración y bomba de calor.i.-1 I.- INTRODUCCIÓN A LOS EQUIPOS DE REFRIGERACIÓN

Más detalles

ÍNDICE PRÓLOGO...2 REPASO DE TERMODINÁMICA...3 VAPOR DE AGUA...4 COMBUSTIBLES Y COMBUSTIÓN...6 CALDERAS DE VAPOR...7

ÍNDICE PRÓLOGO...2 REPASO DE TERMODINÁMICA...3 VAPOR DE AGUA...4 COMBUSTIBLES Y COMBUSTIÓN...6 CALDERAS DE VAPOR...7 1 ÍNDICE Página PRÓLOGO...2 REPASO DE TERMODINÁMICA...3 VAPOR DE AGUA...4 COMBUSTIBLES Y COMBUSTIÓN...6 CALDERAS DE VAPOR...7 EQUIPOS AUXILIARES DE CALDERAS...9 CALENTADORES DE AGUA DE ALIMENTACIÓN...10

Más detalles

Movimiento de fluidos ideales

Movimiento de fluidos ideales Movimiento de fluidos ideales Problema 6.1 Una avioneta vuela a una velocidad de 150 km/h a una altitud de 1.200 m. En un punto A del ala, la velocidad del aire relativa a la misma es de 65 m/s. Suponiendo

Más detalles

DISEÑO DE PLANTAS I SERVICIOS INDUSTRIALES

DISEÑO DE PLANTAS I SERVICIOS INDUSTRIALES 1 Servicio Industrial PLANTAS DE AIRE GASES INERTES CALDERAS CHIMENEAS COMBUSTIBLES TORRES DE ENFRIAMIENTO DESIONIZADORES Y DESMINERALIZADORES PLANTA ELÉCTRICA MECHURRIOS Servicio Industrial INCINERADORES

Más detalles

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO LABORATORIO DE OPERACIONES UNITARIAS FACULTAD DE CS QUÍMICAS Y FARMACÉUTICAS UNIVERSIDAD DE CHILE GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO 1.- Una plancha de cartón de dimensiones 100 cm x

Más detalles

3. Indique cuáles son las ecuaciones de estado térmica y energética que constituyen el modelo de sustancia incompresible.

3. Indique cuáles son las ecuaciones de estado térmica y energética que constituyen el modelo de sustancia incompresible. TEORÍA (35 % de la nota) Tiempo máximo: 40 minutos 1. Enuncie la Primera Ley de la Termodinámica. 2. Represente esquemáticamente el diagrama de fases (P T) del agua; indique la posición del punto crítico,

Más detalles

ESTUDIO DEL CICLO DE RANKINE

ESTUDIO DEL CICLO DE RANKINE ESTUDIO DEL CICLO DE RANKINE 1. INTRODUCCIÓN El ciclo de Rankine es el ciclo ideal que sirve de base al funcionamiento de las centrales térmicas con turbinas de vapor, las cuales producen actualmente la

Más detalles

Tema 11 Ciclos con vapor

Tema 11 Ciclos con vapor ema Ciclo con vapor Ciclo con vapor: Equema. Ciclo de Rankine. Rendimiento de máquina biterma. Fluido empleado. Ciclo de Rankine imple. Factore que afectan al rendimiento (ciclo potencia). Aumento de preión

Más detalles

Eficiencia Energética en la Edificación. Sistemas Térmicos

Eficiencia Energética en la Edificación. Sistemas Térmicos Eficiencia Energética en la Edificación. Sistemas Térmicos Jornada Eficiencia y Sostenibilidad Energética Vigo, 15 de Abril de 2011 Índice dce 1 Introducción 2 3 Sistemas de Control y Gestión en Climatización

Más detalles

REFRIGERACIÓN POR ABSORCIÓN

REFRIGERACIÓN POR ABSORCIÓN REFRIGERACIÓN POR ABSORCIÓN Estos equipos utilizan como base el principio de higroscópico de algunas sales como el Bromuro de litio para generar un vacío en una cavidad que ocasiona una disminución brusca

Más detalles

II.- TRANSFORMACIONES TERMODINÁMICAS http://libros.redsauce.net/

II.- TRANSFORMACIONES TERMODINÁMICAS http://libros.redsauce.net/ II.- TRANSFORMACIONES TERMODINÁMICAS http://libros.redsauce.net/ II.1- INTRODUCCIÓN La Termodinámica describe y define las transformaciones de una forma energética a otra: química a térmica, térmica a

Más detalles

PRÁCTICA 4: EVOLUCIONES PSICROMÉTRICAS

PRÁCTICA 4: EVOLUCIONES PSICROMÉTRICAS TERMODINÁMIA TÉNIA Y TRANSMISION DE ALOR E.I.I. Valladolid Departamento de Ingeniería Energética y luidomecánica urso 2012-2013 PRÁTIA 4: EVOLUIONES PSIROMÉTRIAS OBJETIVOS: Los objetivos de la práctica

Más detalles

Examen de TERMODINÁMICA II Curso 1996-97

Examen de TERMODINÁMICA II Curso 1996-97 ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra Examen de TERMODINÁMICA II Curso 996-97 Obligatoria centro - créditos 8 de septiembre de 997 Instrucciones para el examen de TEST: Cada

Más detalles

Examen de TERMODINÁMICA II Curso 1997-98

Examen de TERMODINÁMICA II Curso 1997-98 ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra Examen de TERMODINÁMICA II Curso 997-98 Obligatoria centro - créditos de agosto de 998 Instrucciones para el examen de TEST: Cada pregunta

Más detalles

Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN. PRODUCCIÓN DE ENERGÍA ELÉCTRICA

Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN. PRODUCCIÓN DE ENERGÍA ELÉCTRICA TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN. PRODUCCIÓN DE ENERGÍA ELÉCTRICA 1.- Concepto de energía y sus unidades: La energía E es la capacidad de producir trabajo. Y trabajo W es cuando al aplicar una fuerza

Más detalles

Colección de Problemas Resueltos de Tecnología Frigorífica Versión 3.1, diciembre de 2013

Colección de Problemas Resueltos de Tecnología Frigorífica Versión 3.1, diciembre de 2013 Colección de Problemas Resueltos de Tecnología Frigorífica Versión., diciembre de 0 5 Evaporador de alta p (kpa) 5 8 0. 0. 0. 0. 8 h (kj/kg) Evaporador de baja 8 Juan Francisco Coronel Toro ([email protected])

Más detalles

UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA

UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA MEZCLA DE GAS VAPOR UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA AIRE SECO Y ATMOSFÉRICO: El aire es una mezcla de Nitrógeno, Oxígeno y pequeñas cantidades de otros gases. Aire Atmosférico:

Más detalles

D E S C R I P C I O N

D E S C R I P C I O N SISTEMA DE REFRIGERACIÓN CON CO 2 COMO FLUIDO SECUNDARIO D E S C R I P C I O N OBJETO DE LA INVENCIÓN La presente invención se refiere a un sistema de refrigeración con CO 2 como fluido secundario que

Más detalles

SISTEMAS TODO AIRE SISTEMAS TODO AIRE CLASIFICACIÓN SISTEMA TODO AIRE DE VOLUMEN CONSTANTE V.A.C.

SISTEMAS TODO AIRE SISTEMAS TODO AIRE CLASIFICACIÓN SISTEMA TODO AIRE DE VOLUMEN CONSTANTE V.A.C. SISTEMAS TODO AIRE SISTEMAS TODO AIRE Los sistemas todo aire, son aquellos que utilizan un caudal de aire, frío o caliente, que es enviado al local a acondicionar, donde directamente se encargará de conseguir

Más detalles

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández Ejercicios Tema III 1) Un cilindro provisto de un pistón, tiene un volumen de 0.1

Más detalles

Eficiencia Energética en las Instalaciones de Climatización

Eficiencia Energética en las Instalaciones de Climatización Eficiencia Energética en las Instalaciones de Climatización Madrid, 25 de Abril de 2013 AFEC. Asociación de Fabricantes de Equipos de Climatización Asociación nacional con sede en Madrid Fundada el año

Más detalles

GAMA HPWH. Acumuladores aerotérmicos. Acumulador 150-190 Litros. Acumulador 300 Litros. Bombas de calor para piscinas / spa

GAMA HPWH. Acumuladores aerotérmicos. Acumulador 150-190 Litros. Acumulador 300 Litros. Bombas de calor para piscinas / spa GAMA HPWH Acumuladores aerotérmicos Acumulador 150-190 Litros Acumulador 300 Litros Bombas de calor para piscinas / spa Bomba de calor para piscinas / spas Bombas de calor para producción de ACS + calefacción

Más detalles

TEMA 8: MOTORES TÉRMICOS

TEMA 8: MOTORES TÉRMICOS TEMA 8: MOTORES TÉRMICOS Son máquinas cuya misión es transformar la energía térmica en energía mecánica que sea directamente utilizable para producir trabajo. Las fuentes de energía térmica pueden ser:

Más detalles

ANALYSIS OF SOLAR RETROFIT IN COMBINED CYCLE POWER PLANTS

ANALYSIS OF SOLAR RETROFIT IN COMBINED CYCLE POWER PLANTS ANALYSIS OF SOLAR RETROFIT IN COMBINED CYCLE POWER PLANTS El objetivo del estudio termodinámico realizado en este proyecto es determinar y maximizar la eficiencia de una central de ciclo combinado. Con

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2014/2015 TECNOLOGÍA INDUSTRIAL II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad Las Orientaciones que se

Más detalles

UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INDUSTRIAL PROGRAMA DE LA ASIGNATURA INGENIERÍA TÉRMICA

UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INDUSTRIAL PROGRAMA DE LA ASIGNATURA INGENIERÍA TÉRMICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INDUSTRIAL PROGRAMA DE LA ASIGNATURA INGENIERÍA TÉRMICA Ingeniero Técnico Industrial en Química CURSO 08/09 DEPARTAMENTO DE INGENIERÍA

Más detalles

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro.

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro. 5.9 * El agua en un depósito rígido cerrado de 50 lt se encuentra a 00 ºC con 90% de calidad. El depósito se enfría a -0 ºC. Calcule la transferencia de calor durante el proceso. 5.4 * Considere un Dewar

Más detalles

D I P L O M A D O. Eficiencia energética y energías limpias

D I P L O M A D O. Eficiencia energética y energías limpias D I P L O M A D O Eficiencia energética y energías limpias Introducción Análisis exegético y termoeconómico Por qué es necesario el análisis exergético? Explicación popular El análisis exergético se aplica

Más detalles

EVAPORADORES Y CONDENSADORES

EVAPORADORES Y CONDENSADORES AMBOS SON LOS ELEMENTOS DONDE SE PRODUCE EL INTERCAMBIO DE CALOR: EVAPORADOR: SE GANA CALOR A BAJA TEMPERATURA, GENERANDO EFECTO DE REFRIGERACIÓN MEDIANTE LA EVAPORACIÓN DEL REFRIGERANTE A BAJA PRESIÓN

Más detalles

Río Lerma 302, 2 Piso, Col. Cuauhtémoc, México, D. F., 06500, Tel. (0155) 3000-1000 Ext. 1242, 1246. www.conae.gob.mx

Río Lerma 302, 2 Piso, Col. Cuauhtémoc, México, D. F., 06500, Tel. (0155) 3000-1000 Ext. 1242, 1246. www.conae.gob.mx Río Lerma 302, 2 Piso, Col. Cuauhtémoc, México, D. F., 06500, Tel. (0155) 3000-1000 Ext. 1242, 1246 Contenido 1 Sistemas de recuperación de calor... 3 1.1 Objetivo... 3 2 Recuperación directa de calor...

Más detalles

a que no representan un gran porcentaje de la generación eléctrica y son en general

a que no representan un gran porcentaje de la generación eléctrica y son en general 30 a que no representan un gran porcentaje de la generación eléctrica y son en general estables (Einpsa, 2013). Como se puede observar en las tablas siguientes: Tabla 1. Resumen equipos de generación del

Más detalles

8. THERMODYNAMICS OF HUMID AIR

8. THERMODYNAMICS OF HUMID AIR 8. THERMODYNAMICS OF HUMID AIR 8.1. Un día seco y caluroso en Madrid se registraron los siguientes datos meteorológicos: temperatura 40 C, presión 705 mm de Hg, humedad relativa del aire 30%. Se desea

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

Ahorro olvidado Recuperación de calor purgas calderas.

Ahorro olvidado Recuperación de calor purgas calderas. Ahorro olvidado Recuperación de calor purgas calderas. 1. Introducción El objetivo de este artículo es llamar la atención de los operadores de plantas térmicas sobre los interesantes ahorros de combustible,

Más detalles

Transformación de calor en trabajo: el motor de Stirling

Transformación de calor en trabajo: el motor de Stirling Práctica Nº 1 ransformación de calor en trabajo: el motor de Stirling 1. Conceptos implicados Primera y segunda ley de la termodinámica, calor, trabajo, máquinas térmicas, transformación de la energía.

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 06. Ciclos de Refrigeración Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema

Más detalles

Tema : MOTORES TÉRMICOS:

Tema : MOTORES TÉRMICOS: Tema : MOTORES TÉRMICOS: 1.1CARACTERÍSTICAS DE LOS MOTORES Se llama motor a toda máquina que transforma cualquier tipo de energía en energía mecánica. Según sea el elemento que suministra la energía tenemos

Más detalles

REFRIGERACIÓN INDUSTRIAL

REFRIGERACIÓN INDUSTRIAL REFRIGERACIÓN INDUSTRIAL condenser compressor expansion device evaporator lóbulo centrífugo rotatorio tornillo Las termostáticas son las mas empleadas debido a que son capaces de asimilar las

Más detalles

PRÁCTICA: ESTUDIO DEL CICLO BRAYTON

PRÁCTICA: ESTUDIO DEL CICLO BRAYTON PRÁCTICA: ESTUDIO DEL CICLO BRAYTON 1. INTRODUCCIÓN En el análisis de los ciclos de turbinas de gas resulta muy útil utilizar inicialmente un ciclo ideal de aire estándar. El ciclo ideal de las turbinas

Más detalles

HISTORIA DEL AIRE ACONDICIONADO

HISTORIA DEL AIRE ACONDICIONADO HISTORIA DEL AIRE ACONDICIONADO FUE EN EL AÑO 1842 CUANDO LORD KELVIN INVENTÓ EL PRINCIPIO DEL AIRE ACONDICIONADO. CON EL OBJETIVO DE CONSEGUIR UN AMBIENTE AGRADABLE Y SANO, EL CIENTÍFICO CREÓ UN CIRCUITO

Más detalles

TIPOS DE DIAGRAMAS DE PROCESO

TIPOS DE DIAGRAMAS DE PROCESO TIPOS DE DIAGRAMAS DE PROCESO Diagramas de Flujo en Bloque Diagramas de Flujo de Proceso en bloque Diagramas de Flujo de Panta en bloque Diagramas de Flujo de Proceso Diagramas de Tuberías e Instrumentos

Más detalles

Bases para la Aplicación de Medidas de Eficiencia Energética Ahorro en Aires Acondicionados. Abril - 24. Dirección de Eficiencia Energética.

Bases para la Aplicación de Medidas de Eficiencia Energética Ahorro en Aires Acondicionados. Abril - 24. Dirección de Eficiencia Energética. Bases para la Aplicación de Medidas de Eficiencia Energética Ahorro en Aires Acondicionados Dirección de Eficiencia Energética Abril - 24 2015 Guatemala Introducción Los sistemas de climatización y equipos

Más detalles

DIAGRAMAS PARA EL ENTENDIMIENTO DE PROCESOS QUÍMICOS

DIAGRAMAS PARA EL ENTENDIMIENTO DE PROCESOS QUÍMICOS DIAGRAMAS PARA EL ENTENDIMIENTO DE PROCESOS QUÍMICOS TIPOS DE DIAGRAMAS DE PROCESO Diagramas de Flujo en Bloque Diagramas de Flujo de Proceso en bloque Diagramas de Flujo de Panta en bloque Diagramas de

Más detalles

INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores

INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores INTERCAMBIADORES DE CALOR Mg. Amancio R. Rojas Flores INTRODUCCIÓN Los intercambiadores de calor son aparatos que facilitan el intercambio de calor entre dos fluidos que se encuentran a temperaturas diferentes

Más detalles

PSICROMETRIA aire seco y vapor de agua

PSICROMETRIA aire seco y vapor de agua PSICROMETRIA La Psicrometría trata la sustancia aire como una mezcla de dos gases que no reaccionan entre sí y se comportan casi como dos gases ideales: aire seco y vapor de agua COMPOSICION DEL AIRE PROPIEDADES

Más detalles

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie..

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. Ricardo Muñoz C. Ingeniero Agrónomo M.S. Sicrometría, en términos

Más detalles

DE INGENIERIA DE APLICACION

DE INGENIERIA DE APLICACION BOLETN No. 8 JULO, 1998 BOLETN DE NGENEA DE APLCACON DESHELO PO GAS CALENTE PAA EFGEACON COMECAL T E M A PAG. El Evaporador 2 G S UL Sistema de Deshielo por Gas Caliente 2 Sistema de Ciclo nverso 2 Sistema

Más detalles

AHORRO DE ENERGÍA EN PISCINAS CUBIERTAS

AHORRO DE ENERGÍA EN PISCINAS CUBIERTAS AHORRO DE ENERGÍA EN PISCINAS CUBIERTAS Autores: Ponente: Empresa: Eva Mª Albarracín / Javier Sanabria / Agustín Maillo Eva Mª Albarracín Moreno CIATESA 1. OBJETIVOS DE UNA INSTALACIÓN DE CLIMATIZACIÓN

Más detalles

Termodinámica. Carrera: EMM - 0535. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Termodinámica. Carrera: EMM - 0535. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Termodinámica Ingeniería Electromecánica EMM - 0535 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Tema 11 - CICLOS CON VAPOR

Tema 11 - CICLOS CON VAPOR ema - CICLOS CON VAPOR ÍNDICE. CICLOS DE RANKINE.... RENDIMIENOS DE MÁQUINAS BIERMAS.... FLUIDOS EMPLEADOS EN CICLOS DE VAPOR..... Criterios de elección del luido..... Fluidos empleados.... CICLO DE RANKINE

Más detalles

Introducción. La refrigeración industrial en nuestro país es principalmente utilizada en:

Introducción. La refrigeración industrial en nuestro país es principalmente utilizada en: 1 2 Introducción La refrigeración se define como cualquier proceso de eliminación de calor. Más específicamente, se define como la rama de la ciencia que trata con los procesos de reducción y mantenimiento

Más detalles

ENERGÍA INTERNA DE UN SISTEMA

ENERGÍA INTERNA DE UN SISTEMA ENERGÍA INTERNA DE UN SISTEMA Definimos energía interna U de un sistema la suma de las energías cinéticas de todas sus partículas constituyentes, más la suma de todas las energías de interacción entre

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg que circula a 100 km/h. Resultado: E C = 385.802,47 J

1. Calcula la energía cinética de un vehículo de 1000 kg que circula a 100 km/h. Resultado: E C = 385.802,47 J 1.- CONCEPTOS BÁSICOS 1. Calcula la energía cinética de un vehículo de 1000 kg que circula a 100 km/h. Resultado: E C = 385.802,47 J 2. Calcula la energía potencial de una masa de 500 kg colgada a 10 m

Más detalles

Sustancia Pura. Cap. 6 INTRODUCCIÓN. Sustancia Pura 6 - Pág. 1. Termodinámica para ingenieros PUCP

Sustancia Pura. Cap. 6 INTRODUCCIÓN. Sustancia Pura 6 - Pág. 1. Termodinámica para ingenieros PUCP Cap. 6 Sustancia Pura INTRODUCCIÓN Estamos entrando al mundo virtual de la información, es una etapa de transición para nuestra Termodinámica clásica, pues dentro de poco dejaremos nuestras antiguas Tablas

Más detalles

SISTEMA SOLAR TERMODINÁMICO

SISTEMA SOLAR TERMODINÁMICO ES SISTEMA SOLAR TERMODINÁMICO M A D E I N I T A L Y EL NUEVO SISTEMA SOLAR TERMODINÁMICO PARA OBTENER AGUA CALIENTE AHORRANDO HASTA EL 85% Agua caliente Ahorro de hasta el 60 C 85% Refrigerante ecológico

Más detalles

Escuela Universitaria de Ingenieros Técnicos de Minas Fundamentos Físicos de la Ingeniería 18. DILATACIÓN FORMULARIO = 5. t ρ. 18.

Escuela Universitaria de Ingenieros Técnicos de Minas Fundamentos Físicos de la Ingeniería 18. DILATACIÓN FORMULARIO = 5. t ρ. 18. 18. DILATACIÓN FORMULARIO Termometría; Dilatación de sólidos : Equivalencia entre las escalas Centígrada Lineal Superficial Cúbica = (1 + γ t) ariación de la masa específica con la temperatura : l t S

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Física y Tecnología Energética. 9 - Máquinas Térmicas. Motor de vapor. Turbinas.

Física y Tecnología Energética. 9 - Máquinas Térmicas. Motor de vapor. Turbinas. Física y Tecnología Energética 9 - Máquinas Térmicas. Motor de vapor. Turbinas. Máquina de vapor de Newcomen (1712) Cuando se hierve agua su volumen se expande 1000 veces y puede empujar un pistón Es necesario

Más detalles

Primera Ley Sistemas Abiertos

Primera Ley Sistemas Abiertos Cap. 10 Primera Ley Sistemas Abiertos INTRODUCCIÓN Este capìtulo complementa el anterior de Sistemas Cerrados para tener toda la gama de màquinas termodinàmicas; tambièn contiene teorìa de las válvulas

Más detalles

MÁQUINAS TERMODINÁMICA

MÁQUINAS TERMODINÁMICA MÁQUINAS r r Trabajo: W F * d (N m Julios) (producto escalar de los dos vectores) Trabajo en rotación: W M * θ (momento o par por ángulo de rotación) Trabajo en fluidos: W p * S * d p * Energía: capacidad

Más detalles

FISICOQUÍMICA Y BIOFÍSICA UNLA

FISICOQUÍMICA Y BIOFÍSICA UNLA FISICOQUÍMICA Y BIOFÍSICA UNLA 1º CUATRIMESTRE Profesor: Ing. Juan Montesano. Instructor: Ing. Diego García. PRÁCTICA 5 Primer Principio Sistemas Abiertos PRÁCTICA 5: Primer Principio Sistemas abiertos.

Más detalles

Ventajas de la Bomba de Calor en uso residencial.

Ventajas de la Bomba de Calor en uso residencial. Ventajas de la Bomba de Calor en uso residencial. 1. Definición de Bomba de Calor. 2. Como funciona? 3. Cómo elegir una Bomba de Calor eficiente? 4. Comparativa de consumo de la Bomba de Calor frente a

Más detalles

INTERCAMBIO MECÁNICO (TRABAJO)

INTERCAMBIO MECÁNICO (TRABAJO) Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3

Más detalles

TECNOLOGÍA JAPONESA AL SERVICIO DE LA REFRIGERACIÓN INDUSTRIAL MAYEKAWA CHILE S.A.C. E I.

TECNOLOGÍA JAPONESA AL SERVICIO DE LA REFRIGERACIÓN INDUSTRIAL MAYEKAWA CHILE S.A.C. E I. TECNOLOGÍA JAPONESA AL SERVICIO DE LA REFRIGERACIÓN INDUSTRIAL MAYEKAWA CHILE S.A.C. E I. REFRIGERACIÓN Ahorro de energía Este concepto ya esta en la mente de cada empresa y persona. Actualmente, es parte

Más detalles
Sitemap