Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág Representación gráfica...pág Propiedades generales...pág.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág."

Transcripción

1 11 Funciones. Objetivos En esta quincena aprenderás a: Comprender, distinguir y valorar el concepto de función Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional Distinguir los conceptos de variable dependiente e independiente, dominio y recorrido Apreciar e interpretar sobre una gráfica las primeras propiedades generales de una función Distinguir, formular y representar situaciones mediante una función de proporcionalidad directa e inversa. Antes de empezar 1.Relaciones funcionales....pág. 204 Tablas, gráficas y fórmulas. Variables Dominio y recorrido 2.Representación gráfica....pág. 211 A partir de tabla o fórmula Unos símbolos muy útiles 3.Propiedades generales....pág. 214 Crecimiento decrecimiento Corte con los ejes Máximos y mínimos 4.Primeras funciones elementales..pág. 219 De proporcionalidad directa De proporcionalidad inversa RESUMEN Autoevaluación Actividades para enviar al tutor MATEMÁTICAS 2º ESO 201

2 MATEMÁTICAS B 202

3 Antes de empezar La Piedra Roseta encierra un documento escrito de tres formas distintas. En la parte superior (jeroglíficos), en la central, (demótico) dos formas de escritura de una lengua muerta, el egipcio. En la parte inferior aparece la misma inscripción en griego. Esto último y la genialidad de Champollión permitió encontrar las claves de las correspondencia entre los signos jeroglíficos y sus imágenes fonéticas. Piedra Roseta Detalle de la escritura jeroglífica Alguno de los cartuchos que ayudaron a descifrarlos equivalentes fonéticos de la escritura egipcia. Clave Alejandro Clave Cleopatra Clave Ptolomeo Clave Ramses Clave Thumosis Contenidos MATEMÁTICAS 2º ESO 203

4 1. Relaciones funcionales Expresión de una relación funcional. Se dice que una correspondencia entre dos conjuntos es una relación funcional, cuando a cada elemento del primer conjunto se le hace corresponder de forma única un elemento del segundo. Observa los ejemplos de estas situaciones. Ejemplo Tabla de valores La libra es una media de peso de origen anglosajón. En la siguiente tabla se da la equivalencia en kilogramos de distintas medidas en libras. En el ejemplo anterior hemos visto la tabla de valores como una forma de expresar una relación funcional. Veamos otras. Entre las distintas formas de expresar una relación funcional, podemos señalar: Mediante una tabla. Mediante una gráfica. Mediante una fórmula. La tabla de valores, la representación gráfica y la formulación mediante una expresión algebraica constituyen las formas habituales de expresar la dependencia entre dos magnitudes. Ejemplo La representación gráfica La gráfica siguiente representa la distancia a la que se encuentra Juan de su casa a lo largo del día. Juan coge el coche, va durante un tiempo, desayuna y lee la prensa sigue un rato hasta la casa de unos amigos que le han invitado a comer. Después de un tiempo regresa rápido ya que se ha hecho un poco tarde. Peso en libras Peso en kilogramos x f(x) A cada valor en el peso de libras, el primer conjunto, le corresponde un único valor en el peso de kilogramos, el segundo conjunto. De forma general diremos que a x peso de libras le corresponde f(x) peso de kilogramos. Si salió a las 9 de la mañana, ha estado fuera 12 horas, así que volvió a las 21:00 horas. Podemos también afirmar que en casa de sus amigos estuvo 4 horas, desde la hora 6 a la hora 10 del tiempo transcurrido, es decir, desde las 15:00 horas hasta las 19:00 horas. También que la casa de Juan está a 9000 metros. Nuevamente observa que para cada valor en el eje Tiempo, existe un único valor en el eje de Distancia. MATEMÁTICAS B 204

5 Ejemplo Expresión algebraica. Una fórmula nos hace pensar siempre en un secreto, una serie de caracteres capaces de encerrar una gran cantidad de información disponible para el que la descifre. En matemáticas una formula es una expresión algebraica que describe la relación funcional y que permite mediante una simple sustitución calcular el transformado de una determinado valor. f(x)= 3x-1 f(-2)=-7 f(-1)=-4 f(2)=5 f(3)=8 Ejemplo Las tablas de precios constituyen una de las aplicaciones más habituales de las funciones definidas mediante tabla. En el ejemplo se puede observar la identificación de la variable independiente y la dependiente. Variable dependiente e independiente. En una relación funcional, a la magnitud que depende de la otra se la denomina variable dependiente, a esta segunda magnitud se la denomina variable independiente. Por cada tiempo en minutos tendremos que pagar una cantidad. (VARIABLE INDEPENDIENTE: TIEMPO) La fórmula es una expresión algebraica que relaciona dos variables. Ejemplo La gráfica representa la distancia en metros a la que se encuentra una persona de sus casa a lo largo de 6 horas de tiempo. MATEMÁTICAS 2º ESO 205

6 Dominio y recorrido. El dominio o campo de existencia de una función es el conjunto de todos los valores que toma la variable independiente. El recorrido, imagen o rango de una función es el conjunto de valores que toma la variable dependiente. Vemos el siguiente ejemplo entre dos conjuntos. Observa como hay un elemento del conjunto B, elemento j, que no pertenece al recorrido, ya que no es imagen de ningún elemento del dominio. Puede haber elementos de B que sean imagen de más de un elemento de A. Ejercicio resuelto 1. La tabla representa valores de una función. Completa los huecos que faltan. Observa que las imágenes de cada valor se van obteniendo multiplicando por 2 y sumando después 5. x f(x) Para calcular la imagen de 8: 2 8+5=21 Para calcular la antiimagen de 23: 23 5 = 9 2 MATEMÁTICAS B 206

7 Ejercicios resueltos 2. Calcula en la siguiente gráfica f ( 3). 3. Haz una tabla de valores para la función f(x) = 1x+1, y luego dibuja su gráfica de puntos. MATEMÁTICAS 2º ESO 207

8 Ejercicios resueltos 4. Entre las siguientes representaciones gráficas hay una que no corresponde a una función. Hay al menos un valor de x al que corresponde más de una imagen, y por tanto no es función. 5. Entre las siguientes representaciones gráficas hay una que no corresponde a una función. Hay al menos un valor de x al que corresponde más de una imagen, y por tanto no es función. MATEMÁTICAS B 208

9 Ejercicios resueltos 6. Halla el dominio de 3x + 4 f ( x) = 2 x Halla el dominio de 4x + 4 f ( x) = x + 5 MATEMÁTICAS 2º ESO 209

10 Ejercicios resueltos 8. Halla el recorrido de f(x)=2x+1 9. Halla el recorrido de 4 f ( x) = x + 4 MATEMÁTICAS B 210

11 2. Representación gráfica Gráfica de una función. A partir de una tabla: Situamos los puntos sobre la gráfica, posteriormente los unimos o no según sea el caso. Para representar gráficamente una función, se forma la tabla de valores correspondiente. Cada pareja se identifica con un punto del plano cartesiano de forma que: La variable independiente x se representa en el eje de abscisas. La variable dependiente y se representa en el eje de ordenadas. Según el tipo de función podrás unir los puntos obtenidos. A partir de una fórmula: O no unirlos, según el planteamiento de la situación tratada. Calculamos el valor de algunos puntos, así que realizamos una tabla de valores. La representación gráfica de una función es una ayuda fundamental para el estudio de propiedades de la misma que no son evidentes en una tabla o una fórmula. Hablamos de conceptos tan visuales como crecimiento, decrecimiento, máximo y mínimos. Dichos conceptos, que veremos más adelante, tienen una aplicación directa en la interpretación de la evolución de muchos procesos. MATEMÁTICAS 2º ESO 211

12 Unos símbolos muy útiles. En la representación gráfica de algunas funciones se utilizan símbolos que ayudan a la comprensión de lo que pasa en un punto, o cerca de de él (en su entorno). Está generalizado el uso de un punto en blanco para indicar que ese punto no forma parte de la gráfica y un punto relleno cuando sí lo es. En el siguiente ejemplo puedes comprobar la utilidad de los símbolos dados. Tomamos valores muy cercanos al punto del que queremos saber su valor en f(x). Obtendremos dos valores laterales, uno por la derecha y otro por la izquierda. Ahora es cuando se debe prestar atención al punto en blanco. Observa que no se obtiene el mismo resultado si aproximamos acercándonos por la derecha. Ejercicio resuelto 10. Representa la gráfica siguiente uniendo sus puntos. x f(x) MATEMÁTICAS B 212

13 Ejercicios resueltos 11. Expresa en forma de intervalo y sobre la gráfica de la función cuál es su dominio. Todos los valores reales entre 5 y 2, ambos incluidos, es decir, 5 x Expresa en forma de intervalo y sobre la gráfica de la función cuál es su recorrido. Todos los valores reales entre 5 y 4, ambos incluidos, es decir, 5 y 4. MATEMÁTICAS 2º ESO 213

14 3. Propiedades generales Crecimiento y decrecimiento. El crecimiento y decrecimiento de una función son conceptos locales. Una función puede ser creciente en un punto y decreciente en otro. Por ello lo que tenemos es que fijarnos en lo que ocurre en la cercanía de cada punto, en su entorno. Corte con los ejes. Es muy importante y ayuda especialmente en el conocimiento de la gráfica de una función, localizar los puntos de corte con los ejes de coordenadas. Una función corta a lo sumo en un punto al eje de ordenadas (0,f(0)) (en caso de que x=0 pertenezca al dominio de f. Una función puede cortar al eje de abscisas cualquier número de veces (incluso infinitas) tantas como soluciones tenga f(x) = 0. Ejemplos En un entorno de x=3 98, si vemos la gráfica, el dibujo va subiendo. Ejemplo Calcula los puntos de corte con los ejes de la función: f (x) = 4x 2 En un entorno de x=0 75, si vemos la gráfica, el dibujo va bajando. RESUMEN Decreciente en un punto cuando "baja" en todos los puntos de su entorno. Creciente en un punto cuando "sube" en todos los puntos de su entorno MATEMÁTICAS B 214

15 Máximos y mínimos relativos. Una función presenta un máximo en un punto si es creciente a la izquierda de ese punto y decreciente a la derecha. Un máximo es análogo a la cima de una montaña. Una función presenta un mínimo en un punto si es decreciente a la izquierda de ese punto y creciente a la derecha. Un mínimo es análogo al punto más bajo en un valle. Ejemplo En la siguiente gráfica de la función podemos observar los conceptos de máximos y mínimos. En el punto (1 5, 4) analizamos máximos. Para x= 1 5, tenemos que f(1 5) = 4. Tal y como aparece en la gráfica, en un entorno de x=1 5, los valores de la función son menores a f(1 5) = 4, queda claro que en un alrededor de (1 5,4) cualquier punto se encuentra gráficamente por debajo de este, tanto a la derecha como a la izquierda. Resulta ser un máximo. Observa también que a la izquierda del máximo la función es creciente y a su derecha decreciente. En la misma función puede tener varios máximos ( análogo para mínimos), por eso se denominan relativos. Al mayor de los máximos ( al menor de los mínimos) se le llama máximo absoluto ( mínimo absoluto). Este es único ya que es absoluto en la función. Tenemos que un cambio de creciente a decreciente o viceversa es la característica para un posible extremo, máximo o mínimo. Ejemplo Esta gráfica no tiene extremos. Análogo como un mínimo para el punto (4 5, 4). Cualquier valor que demos en un entorno cercano de dicho punto alcanza valores de f(x) mayores que 4, es decir, el valor que alcanza en f(x), x= 4 5, es el menor en dicho entorno. Observa también que a la izquierda del mínimo la función es decreciente y a su derecha creciente. MATEMÁTICAS 2º ESO 215

16 Ejercicios resueltos 13. Calcula los puntos de corte con los ejes de las funciones siguientes: 2 5 a)f(x)=4x+1 b) f ( x) = x 8x + 15 c) f ( x) = x a) b) c) MATEMÁTICAS B 216

17 Ejercicios resueltos 14. Entre las siguientes funciones indica la que correspondería a una función decreciente en el punto de abscisa x=0. En un entorno del 0 la función baja 15. Entre las siguientes funciones indica la que correspondería a una función creciente en el punto de abscisa x=0. En un entorno del 0, se cumple la función sube MATEMÁTICAS 2º ESO 217

18 Ejercicios resueltos 16. Indica las coordenadas del punto en el que creas que la función alcanza un máximo. Hay dos máximos relativos, M 1 = ( 2 75,5) y M 2 = (3 5,4 25) 17. Indica las coordenadas del punto en el que creas que la función alcanza un mínimo. Hay un mínimo, m 1 = (2 5,0 ). 18. Indica las coordenadas del punto en el que creas que la función alcanza un extremo. Hay un mínimo, m 1 =(0,0 ), y dos máximos M 1 =( 3 75,5 75), M 2 =(3 25,6 25). MATEMÁTICAS B 218

19 4. Primeras funciones elementales Función de proporcionalidad directa. Ejemplo Planteamos el problema y lo resolvemos de forma algebraica. En muchas situaciones dos variables están relacionadas de manera que cuando una aumenta la otra lo hace también y análogamente cuando disminuye, guardando siempre la misma relación. Son magnitudes directamente proporcionales. Ejemplo Imagina que este fin de semana decides hacer una excursión en bicicleta, con una velocidad constante de 10 km/h, y que conduces con tu bicicleta durante 2 horas, el espacio recorrido es de 20 km. Qué pasaría si fueras a más velocidad durante el mismo tiempo? Podemos construir una tabla con la constante de proporción m=1 6. A más kilogramos más euros necesito. Para un tiempo determinado: A más velocidad más espacio recorrido. A menos velocidad menos espacio recorrido. Las funciones que relacionan este tipo de magnitudes se denominan funciones de proporcionalidad directa. Su gráfica sigue siempre un mismo patrón: una recta que pasa por el origen de coordenadas. Si la representamos gráficamente, obtendremos una recta, de la que podemos interpolar datos. a " A más, más y menos, menos" El valor de m se corresponde con la constante de proporcionalidad directa. MATEMÁTICAS 2º ESO 219

20 Función de proporcionalidad inversa. En muchas situaciones se observa que dos variables están relacionadas de manera que cuando una aumenta la otra disminuye, pero en todo momento su producto es constante. Son magnitudes inversamente proporcionales. Ejemplo Su gráfica sigue siempre un mismo patrón: la hipérbola. "A más, menos y a menos, más" El valor de k se corresponde con la constante de proporcionalidad inversa. Ejemplo Planteamos el problema y lo resolvemos. Si quieres puedes hacer la prueba con una bolsa llena de papeles, a mayor presión hagas sobre los papeles, estos se irán aplastando y ocupando menos volumen. Podemos construir una tabla con la constante de proporción k=60. A menos náufragos más días. Si la representamos gráficamente, obtendremos la rama de una hipérbola. A temperatura constante: P V=k A más presión menos volumen A menos presión más volumen Las funciones que relacionan este tipo de magnitudes se denominan funciones de proporcionalidad inversa. MATEMÁTICAS B 220

21 Ejercicios resueltos 19. Clasifica la relación entre las magnitudes siguientes: Velocidad y tiempo en hacer un recorrido, gasto de luz y kilovatios consumidos, radio y longitud de la circunferencia, altura y peso de una persona, presión y volumen que ocupa un gas, velocidad y espacio en un tiempo fijo. Velocidad y tiempo en hacer recorrido Gasto de luz y kilovatios consumidos Radio y longitud de circunferencia Altura y peso de una persona Presión y volumen que ocupa un gas Velocidad y espacio en un tiempo fijo INVERSA DIRECTA NINGUNA X X X X X X 20. Un mapa tiene por escala 1: Cualquier distancia en el mapa se traduce en su correspondiente realidad y viceversa. 1. Escribe la función que relaciona dicha distancia y represéntala gráficamente. 2. Calcula la distancia correspondiente a 5 50 cm en el mapa. a) b) a función sería f(x) = x ( cada unidad en el mapa se convierte en 70000), a más cm en el mapa más distancia en la realidad. Proporcionalidad directa. a distancia del mapa de 5 50 cm corresponde con f(5 50), resulta: f(5 50) = = cm = 3 85 km MATEMÁTICAS 2º ESO 221

22 Ejercicios resueltos 21. Un grifo de caudal fijo llena un depósito en 6 horas. Si en lugar de uno hubiera 4 grifos. a) Escribe y representa la función que corresponde a la relación entre el número de grifos y el tiempo que tarda en llenar el depósito. b) Cuánto tiempo tardaría? a) Hay más grifos para llenar el depósito, tardará menos tiempo en llenarse, por lo tanto, es una proporcionalidad inversa. La función sería f ( x) = 6 x b) El tiempo para 4 grifos, es el resultado que corresponde a f (4). 6 f ( x) = = 1 5 horas 4 MATEMÁTICAS B 222

23 Funciones 1. Completa los valores de la siguiente tabla: x f(x) Con la función f (x) = 2x+1 calcula la imagen de 5. Dibuja la gráfica de esa función. 3. Completa la tabla de valores correspondiente a la función f (x) = 4x+3. Dibuja la gráfica de esa función. x f(x) Calcula el dominio de la función: f(x)=2x 3 +x 2 +5x+5 7. Calcula el dominio de la función: 4x + 2 f ( x) = x 3 8. Calcula el recorrido de la función: 5 f ( x) = x 9. Calcula el recorrido de la función: 4 f ( x) = x Entre las siguientes gráficas hay una que no corresponde a la de una función. Justifica cuál es la gráfica. 10. Determina de forma gráfica y con intervalos el dominio de la siguiente gráfica: 5. Entre las siguientes gráficas hay una que no corresponde a la de una función. Justifica cuál es la gráfica. 11. Determina de forma gráfica y con intervalos el dominio de la siguiente gráfica: MATEMÁTICAS 2º ESO 223

24 Funciones 12. Determina de forma gráfica y con intervalos el recorrido de la siguiente gráfica: 17. Entre las siguientes funciones indica la que se corresponde con una función creciente en el punto de abscisa x=0 13. Determina de forma gráfica y con intervalos el recorrido de la siguiente gráfica: 18. Entre las siguientes funciones indica la que se corresponde con una función creciente en el punto de abscisa x=0 14. Calcula los puntos de corte con los ejes de la función f(x)=x Halla los puntos de corte con los ejes de la función f(x)=5 3x 16. Entre las siguientes funciones indica la que se corresponde con una función decreciente en el punto de abscisa x= Entre las siguientes funciones indica la que se corresponde con una función decreciente en el punto de abscisa x=0. MATEMÁTICAS B 224

25 20. En la gráfica siguiente indica las coordenadas donde se alcanza un mínimo. 21. En la gráfica siguiente indica las coordenadas donde se alcanza un mínimo. 24. Clasifica la relación entre las magnitudes siguientes: Calorías y cantidad de pastel, velocidad y espacio en un tiempo fijo, lado de un cuadrado y perímetro, número de entradas y recaudación, aficionados al cine y precio de entrada, gasto en combustible y número de litros, números de personas y parte de tarta, tiempo que está la luz encendida y coste, número de días festivos y horas de sol. 25. Un grifo de caudal fijo llena un depósito en 8 horas. Escribe la función que relaciona el número de grifos y el tiempo. Si en lugar de uno hubiese 5, cuánto tardaría? 22. En la gráfica siguiente indica las coordenadas donde se alcanza un máximo. 26. Un grifo de caudal fijo llena un depósito en 5 horas. Escribe la función que relaciona el número de grifos y el tiempo. Si en lugar de uno hubiese uno más, cuánto tardaría? 27. Un mapa tiene por escala 1: escribe la función que corresponde con la escala. Calcula la distancia que correspondería con 2 cm en un mapa. 23. En la gráfica siguiente indica las coordenadas donde se alcanza un máximo. 28. Un mapa tiene por escala 1: escribe la función que corresponde con la escala. Calcula la distancia que correspondería con 4 5 cm en un mapa. MATEMÁTICAS 2º ESO 225

26 Idea sobre continuidad proximidades del mismo. No deben observarse saltos, en el sentido de que cuando la variable independiente varía muy poco, en la variable dependiente no se observen diferencias significativas. La traducción al lenguaje matemático de esta propiedad no es fácil; para la perfecta definición de continuidad en un punto debe recurrirse a todo un invento matemático; el concepto de límite y a los trabajos, entre otros, de matemáticos como: La primera idea que imaginamos sobre continuidad es la de un trazo que dibujamos sin levantar el lápiz del papel. El transcurrir del tiempo, el desplazamiento de un coche que se dirige hacia un lugar determinado, el crecimiento de las plantas, de los niños, de todos los seres vivientes, las distintas posiciones del sol en el cielo durante el día...multitud de situaciones que se asocian intuitivamente hacia relaciones funcionales donde la continuidad es característica común. Cauchy Weierstrass Bolzano La imagen traduce las consecuencias de lo que ocurre con pequeñas variaciones de la variable independiente en funciones continuas en un punto y funciones discontinuas en un punto. Desde el punto de vista matemático; la continuidad es un concepto "local", es decir que para estudiar la continuidad en un determinado valor hay que observar como se comporta la función en los alrededores de ese mismo valor (entorno de ese punto). Para que una función sea continua en un punto de su dominio debe comportarse de forma regular en las MATEMÁTICAS B 226

27 Se dice que una correspondencia entre dos conjuntos es una función, cuando a cada elemento del primer conjunto se le hace corresponder de forma única un elemento del segundo que llamamos imagen. Dominio o campo de existencia es el conjunto de todos los valores que toma la variable independiente. Recorrido, imagen o rango es el conjunto de valores que toma la variable dependiente. Función de proporcionalidad directa Para representar gráficamente una función, se forma la tabla de valores correspondiente. Cada pareja se identifica con un punto del plano cartesiano. Representamos en el eje de abscisas la variable independiente. Usualmente se denota como x, y al eje como OX. La variable dependiente se representa en el eje de ordenadas. Se le suele denotar como y. Y el eje como OY. "A más... más y a menos... menos" La gráfica es una línea recta que pasa por el origen de coordenadas. Función de proporcionalidad inversa Puntos de corte con los ejes, crecimiento "A más... menos y a menos... más" La gráfica es una hipérbola equilátera. Extremos de una función MATEMÁTICAS 2º ESO 227

28 1. Una función asocia a cada valor el resultado de multiplicar por 1 y restar 2. Cuál es la imagen de 0? 2. Una función asocia a cada número su doble menos 8. Cuál es el número cuya imagen es 8? 3. Una función tiene por fórmula f(x)=7x+2. Indica cuál es el valor f(5)? 4. Una función tiene por fórmula 4 f ( x) =. 8 4 f ( x) =. Indica cuál es el valor de x en x 5. Un conductor va a una velocidad uniforme de 70 km/h. Indica la distancia que habrá recorrido al cabo de 5 horas. 6. Por término medio una persona inspira una vez cada 2 segundos. Si por cada inspiración consume 3 litros de aire, calcula el volumen de aire que ha consumido en 14 horas. 7. Si una función tiene por fórmula pertenece a su dominio? x 12 f ( x) =. Qué valor no x 4 8. Indica el valor en el que la función f(x)=-3x+9 corta al eje de abscisas (OX). 9. Indica el valor en el que la función f(x)=-6x-4 corta al eje de ordenadas (OY). 10. Indica si la función que relaciona: Lado de un pentágono y perímetro, es de proporcionalidad directa, inversa o ninguna de las dos. MATEMÁTICAS B 228

29 Soluciones de los ejercicios para practicar Funciones. 1. f(8)=20, f(9)= f(-5)= x f(x) R= reales 7. R\{3} 8. R\{0} 9. R\{0} 14. ( 5,0), (0,5) (,0), (0,5) 3 MATEMÁTICAS 2º ESO 229

30 ( 1 75,2) 21. ( 5, 3) 22. (5,7) 23. ( 6,4) y (6,2) 24. Directa Inversa Ninguna Calorías y cantidad de pastel X Velocidad y espacio en un tiempo fijo X Lado de un cuadrado y perímetro X Nº de entradas y recaudación X Aficionados al cine y precio X Gasto combustible y nº de litros X Nº de personas y parte de tarta X Tiempo de luz encendida y coste X Nº de días festivos y horas de sol X f ( x) =, 1 6 horas x 5 f ( x) =, 2`5 horas x 27. f(x)=90000x, 4 95 km 28. f(x)=60000x, 2 7 km Soluciones AUTOEVALUACIÓN x=3 9. y= Directa No olvides enviar las actividades al tutor MATEMÁTICAS B 230

Problemas de funciones para 2º E.S.O

Problemas de funciones para 2º E.S.O Problemas de funciones para 2º E.S.O 1º) Esboza una representación gráfica de las siguientes funciones: a) La altura a la que se encuentra el asiento de un columpio, al pasar el tiempo. b) La temperatura

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

8 FUNCIONES: PROPIEDADES GLOBALES

8 FUNCIONES: PROPIEDADES GLOBALES 8 FUNCINES: PRPIEDADES GLBALES EJERCICIS PRPUESTS 8. Escribe las coordenadas de los puntos que aparecen en la figura. A D B C A( 3, 3) B(3, ) C(3, ) D( 3, 3) 8. Representa estos puntos en un eje de coordenadas.

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 01/01 DEPARTAMENTO DE MATEMÁTICAS NOMBRE GRUPO TEMA 1 : LOS NÚMEROS

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no:

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no: FUNCIONES Recuerda: Una función es una correspondencia entre dos conjuntos (o relación entre magnitudes), de forma que cada elemento del conjunto inicial le corresponde sólo un elemento del conjunto final.

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen TEMA 6 FUNCIONES 1.- Estudia y clasifica las relaciones que aparecen en las siguientes situaciones (elementos relacionados, características de la relación, dependencia entre elementos, conjuntos que se

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA 9 FUNCINES DE PRPRCINALIDAD DIRECTA E INVERSA EJERCICIS PRPUESTS 9. Dibuja la gráfica de la función que eprese que el precio del litro de gasolina en los últimos 6 meses ha sido siempre de 0,967 euros.

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

Formas de expresar la relación entre dos variables.

Formas de expresar la relación entre dos variables. 866 _ 00-06.qxd 7/6/08 : Página Funciones INTRDUCCIÓN RESUMEN DE LA UNIDAD La representación gráfica de las funciones es la forma más adecuada de entender la relación entre las variables. Estas gráficas

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado.

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Funciones EJERCICIOS 00 Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Expresión algebraica: y = x 3 x o f(x) = x

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

LAS FUNCIONES ELEMENTALES

LAS FUNCIONES ELEMENTALES UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA. EJERCICIOS DE REPASO MATEMÁTICAS.- º ESO ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.. Sergio trabaja horas todas las semanas

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

4. FUNCIONES DE VARIAS VARIABLES

4. FUNCIONES DE VARIAS VARIABLES 4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano.

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Consigna: En equipos, resuelvan la siguiente actividad. A partir de la siguiente

Más detalles

TEMA 4 FUNCIONES ELEMENTALES I

TEMA 4 FUNCIONES ELEMENTALES I Tema 4 Funciones elementales I Ejercicios resueltos Matemáticas B 4º ESO 1 TEMA 4 FUNCIONES ELEMENTALES I DEFINICIÓN DE FUNCIÓN EJERCICIO 1 : Indica cuáles de las siguientes representaciones corresponden

Más detalles

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

Funciones y gráficas. Objetivos. Antes de empezar

Funciones y gráficas. Objetivos. Antes de empezar 9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Reconocer si una relación entre dos variables es una función o no. Distinguir la variable independiente y la dependiente. Expresar una función

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16 IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: FUNCIONES Y GRÁFICAS: 1. Ricardo ha quedado con sus amigos para dar una vuelta

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 4 5 5 6 Resolver las siguientes ecuaciones

Más detalles

Estudio matemático de 1relaciones entre dos variables

Estudio matemático de 1relaciones entre dos variables .............................................................................................................................................................................. U N I D A D Estudio matemático

Más detalles

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto 11 Tablas y gráficas Objetivos En esta quincena aprenderás a: Representar puntos en el plano Calcular las coordenadas de un punto Construir e interpretar gráficas cartesianas Construir e interpretar tablas

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

PROGRAMACIÓN DE AULA MATEMÁTICAS 6º DE PRIMARIA

PROGRAMACIÓN DE AULA MATEMÁTICAS 6º DE PRIMARIA PROGRAMACIÓN DE AULA MATEMÁTICAS 6º DE PRIMARIA UNIDAD 1: NÚMEROS NATURALES. OPERACIONES Conocer los nueve primeros órdenes de unidades y sus equivalencias. Leer, escribir y descomponer números de hasta

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = =

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = = Matemáticas EDUCACIÓN SECUNDARIA Opción A SOLUCIONES Evaluación: Fecha: Ejercicio nº 1.- a) Opera y simplifica: 1 1 1, 4, + : 5 b) Reduce a una sola potencia: 4 1 5 5 0 a) Expresamos N =, en forma de fracción:

Más detalles

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido 9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

UNIDAD 7 Funciones y gráficas

UNIDAD 7 Funciones y gráficas Pág. de I. Has visto que las gráficas contienen mucha información. Te sientes capaz de extraerla analizándolas a fondo? En la puerta de un colegio hay un puesto de golosinas. En esta gráfica se ve la cantidad

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

CUADERNO Nº 11 NOMBRE: FECHA: / / Funciones. Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional.

CUADERNO Nº 11 NOMBRE: FECHA: / / Funciones. Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional. Funciones Contenidos 1. Relaciones funcionales Tablas, gráficas y fórmulas. Variables Dominio y recorrido 2. Representación gráfica A partir de tabla o fórmula Unos símbolos muy útiles 3. Propiedades generales

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Anexo a la guía 4 Geometría: ejemplos y comentarios

Anexo a la guía 4 Geometría: ejemplos y comentarios Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

GEOMETRÍA 1.- INTRODUCCIÓN:

GEOMETRÍA 1.- INTRODUCCIÓN: GEOMETRÍA 1.- INTRODUCCIÓN: Etimológicamente hablando, la palabra Geometría procede del griego y significa Medida de la Tierra. La Geometría es la parte de las Matemáticas que estudia las idealizaciones

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles

APRENDIZAJE DEL CONCEPTO DE LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN

APRENDIZAJE DEL CONCEPTO DE LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN APRENDIZAJE DEL CONCEPTO DE LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN AUTORÍA ANTONIO JESÚS MARTÍNEZ RUEDA TEMÁTICA MATEMÁTICAS ETAPA BACHILLERATO Resumen La introducción del concepto de límite en bachillerato

Más detalles

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente?

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? UD 4 Funciones. Características globales 4º ESO (opción A) 1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? 2.

Más detalles

LÍMITES DE FUNCIONES, INDETERMINACIONES, CONTINUIDAD, RELACIÓN CON LA APLICACIÓN EN LA INTERPRETACIÓN DE SITUACIONES Y SU REPRESENTACIÓN.

LÍMITES DE FUNCIONES, INDETERMINACIONES, CONTINUIDAD, RELACIÓN CON LA APLICACIÓN EN LA INTERPRETACIÓN DE SITUACIONES Y SU REPRESENTACIÓN. LÍMITES DE FUNCIONES, INDETERMINACIONES, CONTINUIDAD, RELACIÓN CON LA APLICACIÓN EN LA INTERPRETACIÓN DE SITUACIONES Y SU REPRESENTACIÓN. Abel Martín. Profesor de Matemáticas del IES Pérez de Ayala (Oviedo

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Funciones. 63 Ejercicios para practicar con soluciones

Funciones. 63 Ejercicios para practicar con soluciones Funciones. 63 Ejercicios para practicar con soluciones Dadas las siguientes funciones gráficas, asocia cada función con su gráfica: a) f() = b) g() = - c) h() = 3 a) La 3; b) La ; c) La De las siguientes

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

Estabilidad dinámica Introducción

Estabilidad dinámica Introducción Figura 127: Varada Si el momento de asiento unitario del barco, en las condiciones de desplazamiento en las que se encuentra, es M u, tendremos que la alteración producida al bajar la marea de forma que

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Interpretación de gráficas Se suelta un globo que se eleva y, al alcanzar cierta altura, estalla. La siguiente gráfica representa la altura, con el paso del tiempo, a la que se encuentra

Más detalles

x 0 1 2 3 4 y = 2x 0 2 4 6 8

x 0 1 2 3 4 y = 2x 0 2 4 6 8 Función lineal La función lineal es del tipo: y = mx Su gráfica es una línea recta que pasa por el origen de coordenadas. y = 2x x 0 1 2 3 4 y = 2x 0 2 4 6 8 1 Pendiente La pendiente es la inclinación

Más detalles

8Soluciones a las actividades de cada epígrafe

8Soluciones a las actividades de cada epígrafe PÁGINA 128 Pág. 1 En una comarca hay una cierta especie de vegetal que se encuentra con frecuencia. Se ha estudiado la cantidad media de ejemplares por hectárea que hay a distintas alturas. El resultado

Más detalles

4Soluciones a los ejercicios y problemas PÁGINA 96

4Soluciones a los ejercicios y problemas PÁGINA 96 Soluciones a los ejercicios y problemas PÁGINA 96 Pág. P RACTICA Interpretación de gráficas Pepe y Susana han medido y pesado a su hijo, David, cada mes desde que nació hasta los meses. Estas son las gráficas

Más detalles

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH 1) ANÁLISIS DE CORRELACIÓN Dado dos variables, la correlación permite hacer estimaciones del valor de una de ellas conociendo el valor de la otra variable.

Más detalles

PRACTICO 2: Funciones Noviembre 2011

PRACTICO 2: Funciones Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO : Funciones Noviembre 011 Ejercicio 1.- Reescriba las oraciones que siguen usando la palabra función. (a) El impuesto

Más detalles

Tema 2 (2 a parte) Razones y proporciones

Tema 2 (2 a parte) Razones y proporciones Tema 2 (2 a parte) Razones y proporciones Una razón es una relación entre dos cantidades. Ej: a) en una bolsa con bolas blancas y negras, la razón de bolas blancas a negras es de 2 a 7. b) en cierto examen,

Más detalles

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS Y. Representa en los mismos ejes las siguientes funciones: y = - ; b) y = ; c) y = +. Representa

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y) Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles
Sitemap