El movimiento rectilíneo


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El movimiento rectilíneo"

Transcripción

1 1 El movimiento rectilíneo Objetivos En esta quincena aprenderás a: Valorar la observación como una acción básica para el conocimiento científico. Reconocer el papel que desempeñó el estudio de los movimientos en el desarrollo del método científico. Identificar las magnitudes físicas que permiten interpretar los movimientos con rigor y sin ambigüedad. Describir movimientos cotidianos tanto naturales como propulsados. Utilizar los gráficos como estrategia para la resolución de problemas. Adquirir estrategias que permitan resolver cuestiones físicas relacionadas con los movimientos. Resolver problemas sobre movimientos rectilíneos. Antes de empezar 1. Observa, algo se mueve... pág. 4 Sistema de referencia, SR Trayectoria Posición Desplazamiento Velocidad 2.Cambiando la velocidad... pág. 10 La aceleración Variación uniforme de la velocidad 3. El movimiento rectilíneo (MR)... pág 13 MR uniforme MR uniformemente acelerado MR en gráficos La caída libre Ejercicios para practicar Para saber más Resumen Autoevaluación Actividades para enviar al tutor FÍSICA Y QUÍMICA 1

2 2 FÍSICA Y QUÍMICA

3 Antes de empezar El movimiento Si hay un ejemplo de fenómeno físico que ha merecido la atención del ser humano desde la antigüedad hasta nuestros días, es el del movimiento. La forma de orientarse más antigua conocida es a través de la posición que van adoptando las estrellas en la cúpula celeste a lo largo del año y de la zona donde se observa. La trayectoria de las partículas fundamentales en reacciones nucleares es un tema de gran actualidad, permite retrotraernos a los orígenes del universo. Las situaciones que se abordan en este tema representan una pequeña parte de la realidad y en muchos casos simplificada, Galileo así lo entendió y con ello ofreció un modo de actuar asumido por la Ciencia como forma de trabajo en el quehacer científico, el método científico. Su aplicación permitió a Isaac Newton deducir las Leyes de la Dinámica y la Ley de Gravitación Universal que gobiernan la mayoría de los movimientos cotidianos y celestes respectivamente. Más tarde, estos conocimientos inspiraron a los químicos en las teorías atómicas las cuales ofrecen una explicación de la estructura íntima de la materia. Todo ello será abordado a lo largo del curso, pero, volvamos al principio y tratemos de describir los movimiento rectilíneos. FÍSICA Y QUÍMICA 3

4 1. Observa, algo se mueve Sistema de referencia SR El movimiento forma parte de los fenómenos físicos que más directamente se perciben, sin embargo, su descripción detallada ha traído de cabeza a más de un científico a lo largo de la historia, a qué ha podido ser debido? La apariencia de un movimiento depende del lugar de observación, en concreto de su estado de movimiento. El descenso de una hoja que cae de un árbol es distinto visto por una persona situada debajo que el de otra que lo observa desde un autobús en marcha. Esto plantea la necesidad de elegir un sistema de referencia relativo al cual se refiera la observación. La Luna describe un círculo si se observa su movimiento desde la Tierra. Si trasladamos el sistema de referencia al Sol, ese mismo movimiento se convierte en un epicicloide. Sistema de referencia (SR) es el lugar desde donde se miden las posiciones que atraviesa un móvil a lo largo del tiempo. Trayectoria Cómo describirías el movimiento de la Luna? Qué pensaban los hombres y mujeres acerca del movimiento del sol antes del s. XVI? Es vertical y hacia abajo el movimiento de un objeto al caer? La referencia más inmediata de un movimiento es la forma del camino que describe, pero hay que precisar un poco más para acercarse al concepto que ahora se presenta: la trayectoria. Observa la trayectoria que describe el avión, coincide con el rastro creado por la condensación de los gases que expulsa el motor. El resultado de observar un movimiento está ligado a un SR, como hemos visto en el anterior apartado. El que se mueva o no el SR repercute en la forma de percibir el movimiento estudiado. Trayectoria es el camino que describe un objeto al desplazarse respecto de un sistema de referencia 4 FÍSICA Y QUÍMICA

5 Posición: Representación vectorial La descripción de un movimiento requiere conocer el lugar donde se encuentra (posición) y cuándo (instante). Instante Se representa por la letra t, acompañado de algún subíndice si es necesario, para indicar el lugar que ocupa este dato respecto de un conjunto de medidas. La unidad fundamental en el Sistema Internacional es el segundo (s). El tiempo transcurrido entre dos instantes se simboliza con las letras t. Pongamos un ejemplo: Obtenemos el conjunto de datos siguientes por la lectura directa de un cronómetro: 0s ; 0,5 s; 1 s; 1,5 s. En esta imagen la posición para cada instante t, se corresponde con el vector, representado por una flecha. Situación Inicial Símbolo t 0 = 0 s Tiempo transcurrido 1 t 1 = 0,5 s t = t 1-t o = 0,5 s 2 t 2 = 1,0 s t = t 2-t 1 = 0,5 s 3 t 3 = 1,5 s t = t 3-t 2 = 0,5 s Posición La representación en un plano se realiza sobre unos ejes coordenados XY. El observador se sitúa en el origen del Sistema de referencia (SR). Mediante un aparato de medida adecuado o a través de relaciones matemáticas se determina el valor de cada posición (X,Y). El valor X corresponde a la abcisa, eje horizontal, y el valor Y a la ordenada, eje vertical. El gráfico flecha permite representar cualquier magnitud física que requiera más información que un número seguido de una unidad. Se expresa con dos componentes x e y, colocadas entre paréntesis y con una coma de separación entre ambas. Gráficamente se tratan como las coordenadas de un punto (que en el caso de la posición lo son). La posición de un móvil se dibuja en el plano a través de un vector (x,y) que representa las coordenadas cartesianas de un punto. FÍSICA Y QUÍMICA 5

6 La representación vectorial de una magnitud física contiene tres datos: el módulo, la dirección y el sentido. Para el caso de la posición, qué son y cómo se averiguan? La posición tiene que informar de la situación de un móvil respecto de un observador situado en el SR. Esta información se concreta con la distancia al SR y con las coordenadas del punto donde se encuentra. El módulo, la dirección y el sentido del vector posición dan cuenta de ello, veamos cómo: MÓDULO Gráficamente se corresponde con el tamaño del vector ("flecha"). Para el caso de la posición informa de la distancia del móvil al origen del sistema de referencia. Cómo se calcula esta distancia? El tamaño del vector coincide con el valor de la hipotenusa de un triángulo cuyos lados se corresponden con las componentes (X,Y) del vector. DIRECCIÓN Y SENTIDO La dirección es la recta que contiene al vector ("flecha ). El sentido es el marcado por la punta de la flecha. El punto de aplicación (origen) es el (0,0) del SR y el extremo el lugar donde está el móvil. Observa el ejemplo El módulo del vector posición determina la distancia del objeto que se mueve al origen del sistema de referencia. Pero un móvil cambia de posición, Qué magnitud física da cuenta de ello? 6 FÍSICA Y QUÍMICA

7 Desplazamiento La palabra desplazarse tiene un uso cotidiano, pero, como es frecuente, el lenguaje científico la ha adoptado precisando su significado. Un móvil se desplaza, evidentemente cuando se mueve, pero se corresponde con algún valor concreto? Es lo mismo espacio recorrido que desplazamiento?... El movimiento rectilíneo el espacio que recorrió?. Te proponemos que realices un planteamiento concreto de esta situación. Toma papel y lápiz y representa una bola de billar que inicialmente se encuentra en la posición (-40,-10), y tras un impulso choca contra otra bola en la posición (9,0). Dibuja: la trayectoria, la posición inicial y la final y el desplazamiento. Determina el módulo del desplazamiento. Qué espacio ha recorrido? El desplazamiento entre dos instantes, t o y t, se corresponde con un vector que se extiende desde la posición en t o hasta la posición en t. El resultado para una velocidad horizontal vx=10 m/s y una velocidad vertical vy=2 m/s es de 50 cm) Observa en la imagen superior el desplazamiento simbolizado por el vector rojo que parte de la posición en el instante inicial t o y termina en la posición correspondiente al instante final t f. Imagina una bola de billar describiendo un movimiento rectilíneo entre dos choques consecutivos (dos instantes). Cómo se representa el desplazamiento?. A partir de él, se podría determinar Si la trayectoria entre dos instantes es rectilínea, el desplazamiento (su módulo) equivale al espacio recorrido. Su unidad fundamental de medida en el SI es el metro (m). FÍSICA Y QUÍMICA 7

8 Velocidad La velocidad de un objeto a menudo se confunde con la rapidez. La velocidad físicamente es un vector y por tanto tiene un módulo (la rapidez), una dirección y un sentido. Módulo: Es la rapidez aunque en la mayoría de contextos se identifica como la velocidad. El vector velocidad se dibuja sobre el móvil con un tamaño proporcional a su módulo. La dirección es la de la recta tangente a la trayectoria y el sentido el del movimiento. La rapidez con que se desplaza un móvil es la relación (cociente) entre el espacio que se recorre y el tiempo que tarda en recorrerlo. Su unidad fundamental en el Sistema Internacional es el metro por segundo (m/s). En esta imagen los dos pájaros recorren en t=3,8 s distinto espacio. En A se ha desplazado más deprisa que el B por que ha recorrido más espacio en el mismo tiempo. Para mostrar toda esta información se requiere de la notación vectorial. A pesar de que el módulo de un vector es una cantidad positiva, resulta útil para los cálculos en los movimientos rectilíneos usar un signo algebraico que indica el sentido del movimiento. Esta notación será utilizada frecuentemente en este curso y se resume en: v>0, El móvil se dirige hacia el sentido positivo del eje de coordenadas. v<0, El móvil se dirige hacia el sentido negativo del eje de coordenadas. Durante un movimiento pueden producirse cambios en la rapidez, en estos casos el cálculo obtenido es una velocidad media de todo el recorrido. La rapidez es un aspecto de la velocidad. Dos móviles pueden llevar la misma rapidez pero dirigirse a sitios diferentes. Nuevamente el carácter vectorial de esta magnitud permite reflejar estos aspectos. Cómo se representan? 8 FÍSICA Y QUÍMICA

9 EJERCICIOS RESUELTOS 1.Representa la posición (2,6, 3,2). Solución: Se representan unos ejes cartesianos. El primer valor del paréntesis es la coordenada X y el segundo la coordenada Y El movimiento rectilíneo 2.Determina la distancia del móvil en las posiciones A, B y C respecto al origen del sistema de referencia (los ejes cartesianos tienen escalas distintas en cada imagen): A c B Solución: El módulo de la posición es el tamaño del vector que lo representa. r= x 2 y 2 A r= 2 2 2,8 2 3,4m B r= 2,6 2 1,2 2 2,9m C r= 2,6 2 2,3 2 3,4m 3.Transforma a m/s las velocidades: 43,2 Km/h; 120 Km/h;1200 cm/min Solución: 12 m/s; 33,3 m/s; 0,2 m/s 4.Determina el desplazamiento realizado por un móvil que desde la posición (-40,-10) se dirige hacia la posición (9,-10) Solución: 5.Indica la velocidad de cada móvil teniendo en cuenta el convenio de signos estudiado. Solución: Coche A v = 1,5 m/s Coche B v = -1 m/s Coche C v = -2 m/s FÍSICA Y QUÍMICA 9

10 2. Cambiando la velocidad La aceleración En el siguiente ejemplo se trata de distinguir entre los movimientos con aceleración de los que no la tienen. Qué tiene que ocurrir para poner en movimiento un objeto?, y para detenerlo?, por qué la Luna completa sus fases en el tiempo previsto y sin embargo hay dudas sobre si un penalti terminará en gol? El valor de la velocidad de un móvil se modifica por la acción de la aceleración, la cual depende de las interacciones que otros cuerpos ejerzan sobre él. La velocidad, por su carácter de vector, tiene módulo (rapidez), dirección y sentido. La aceleración también es un vector y según qué aspecto de la velocidad modifica recibe un nombre distinto. Aceleración tangencial, modifica la rapidez del movimiento. (módulo de la velocidad). Aceleración normal, modifica la dirección del movimiento (dirección de la velocidad). De la imagen se desprenden tres situaciones. A: el avión parte del reposo y adquiere una velocidad de 4,6 m/s, en 4,7 s. B: El avión parte del reposo y adquiere una velocidad de 2,3 m/s en 4,7 s. C: El avión mantiene la velocidad de 1 m/s en todo momento. En las situaciones A y B el avión ha cambiado la rapidez (módulo de la velocidad) y por tanto tiene aceleración. En la situación C no ha variado la velocidad por lo que no ha acelerado. El más rápido en incrementar la velocidad es el A. Esto se traduce en que ha experimentado una mayor aceleración que el B. Este tema trata de los movimientos de trayectoria rectilínea y por tanto la dirección es constante a lo largo del tiempo. El único tipo de aceleración que puede actuar es la tangencial, por ello, en adelante, se usará frecuentemente el término aceleración para referirse a ella. 10 FÍSICA Y QUÍMICA

11 Las características del vector aceleración tangencial son: Módulo: es la variación de velocidad que experimenta un móvil en una unidad de tiempo. En el Sistema Internacional la unidad fundamental es el m/s2 La relación matemática que responde a la definición de aceleración, para un intervalo de tiempo donde es constante o bien se trata de determinar una aceleración media es: El movimiento rectilíneo Si la aceleración tiene el mismo sentido que la velocidad produce un incremento de la rapidez Dirección: la misma que la velocidad, tangente a la trayectoria. Sentido: El criterio de signos es el mismo que el aplicado a la velocidad. Situación Signo del módulo Situación Signo del módulo Aceleración en el sentido positivo de los ejes Positivo, a>0 Aceleración en el sentido negativo de los ejes Negativo, a<0 Si la aceleración tiene sentido contrario a la velocidad se produce una desaceleración o frenado. Variación uniforme de la velocidad En la mayor parte de los movimientos cotidianos, la aceleración no es una magnitud constante, es decir, los cambios de velocidad no se realizan con igual rapidez. Este tema se centra en movimientos con aceleración constante. Una manera de detectar el comportamiento de la aceleración es analizar las gráficas velocidad/instante. Si la aceleración tangencial es constante a lo largo de todo un recorrido la gráfica que refleja los valores de la velocidad a cada instante es una línea recta. Para saber más sobre la aceleración visita la web, 0&1 FÍSICA Y QUÍMICA 11

12 EJERCICIOS RESUELTOS 1. Determina la aceleración de cada avión sobre la pista de despegue, a partir de los datos de la imagen. Solución: Relación matemática A a= 3,4 0 = 0,5m/s 2 6,8 B a= 3,4 0 =0,5m/ s2 6,8 C a=0m/s 2 a= v f v o t f t o Tanto en la situación A como en la B incrementa la velocidad. 2. A partir de la gráfica velocidad frente a instante, realiza una tabla con los datos de velocidad para los instantes marcados con un punto, y determina la aceleración en cada intervalo de tiempo Solución: Instante (s) Velocidad (m/s) to = 0 vo = 0 t1 = 1 v1 = 0,8 t2 = 2 v2 = 1,6 t3 = 3 v3 = 2,4 t4 = 4 v4 = 3,2 t5 = 5 v5 = 4,0 t6 = 6 v6 = 4,8 Aceleración (m/s 2 ) a 01 = 0,8 a 12 = 0,8 a 23 = 0,8 a 34 = 0,8 a 45 = 0,8 a 56 = 0,8 12 FÍSICA Y QUÍMICA

13 3. El movimiento rectilíneo MR Movimiento rectilíneo uniforme, MRU En la práctica científica se tiende a considerar situaciones simplificadas de los fenómenos, para, una vez comprendidas, introducir variables que las aproximen más a la realidad. En esta línea, el movimiento de un objeto está condicionado por su interacción (rozamiento, acción de un motor, gravedad, fuerzas eléctricas ) con el resto de objetos del Universo, los cuales, con más o menos intensidad le comunican una aceleración que perturba su camino. Pero, cómo sería el movimiento de un objeto completamente aislado, o simplemente se anularan todas las interacciones que actúan sobre él?... ECUACIÓN DEL MOVIMIENTO EN MRU La relación matemática principal, a partir de la cual se deduce el resto, es la que determina la velocidad de un objeto a partir del espacio que recorre, X, durante el intervalo de tiempo, t. Xo es la posición inicial; to es el instante que marca el cronómetro al comienzo (normalmente es cero). Si un objeto en movimiento no tiene aceleración, describe una trayectoria rectilínea (no hay aceleración normal que cambie la dirección de la velocidad ) y la rapidez es constante (no hay aceleración tangencial que modifique el módulo de la velocidad). Se desarrollan los incrementos, Se despeja la posición X, Este tipo de movimiento se conoce como Movimiento Rectilíneo Uniforme (MRU). En la imagen el objeto no interacciona con otros objetos. Su movimiento no puede ser otro que un MRU. La ecuación del movimiento permite conocer la posición X para cualquier instante t. Características del MRU Trayectoria rectilínea. Velocidad constante (módulo, dirección y sentido). El espacio recorrido es igual al desplazamiento. Relación matemática principal. FÍSICA Y QUÍMICA 13

14 MR uniformemente acelerado, MRUA En los movimientos ordinarios, la velocidad no suele ser una magnitud constante, la aceleración está presente bien por causas naturales (p. e. la gravedad) o por otras interacciones (rozamiento, fuerza producido por un motor, fuerzas eléctricas. Por la presencia de estas interacciones los objetos dejan de moverse en línea recta y resultan trayectorias, en general, curvilíneas. En este apartado se tratarán aquellos movimientos, que poseen exclusivamente aceleración tangencial. Reciben el nombre de MRUA (Movimiento Rectilíneo Uniformemente Acelerado). Ecuación del movimiento en MRUA La ecuación de movimiento es mrua se determina a partir de la expresión matemática, Para profundizar más es el origen de esta relación matemática se recomienda visitar la dirección web: h/movimiento(ii)/22mov2.htm? 1&1 Si un objeto tiene únicamente aceleración tangencial, describe una trayectoria rectilínea y, si además es constante, la rapidez (módulo de la velocidad) variará de forma uniforme. El significado de cada término es el que sigue, Símbolo X Xo Vo a Significado Posición correspondiente al instante t Posición en el instante to Velocidad en el instante to Aceleración Otros símbolos empleados: t, tiempo transcurrido entre dos instantes, equivale a (t-to). X, desplazamiento entre dos instantes, equivale a (X-Xo). Aplicando parte de esta notación, la ecuación del movimiento toma la forma: Esta imagen representa el movimiento de tres bolas fotografiadas a intervalos de tiempo iguales. Intenta justificar por qué el azul no posee aceleración, para el rojo es constante y para el verde la aceleración no es constante. 14 FÍSICA Y QUÍMICA

15 El movimiento rectilíneo en gráficos Gran parte del conocimiento científico se base en el análisis de datos. Las gráficas permiten visualizar relaciones o tendencias entre magnitudes, facilitando el trabajo del científico para sacar conclusiones, extrapolar resultados... etc. El estudio de cualquier movimiento parte de la observación de éste, tomando los datos de tiempo y posición, con toda la precisión que se pueda. Y después, cómo han de presentarse los resultados?. El uso de tablas ayuda a ordenar los datos, y las gráficas a encontrar relaciones y tendencias entre las magnitudes analizadas. Veamos un ejemplo. Tratamiento de los datos y su representación en gráficos De la observación de un movimiento se obtienen los siguientes datos: 0 s, 3m, 2 s, 9 m, 4 s, 27 m, 6 s, 71 m, 8 s, 99 m. Una vez se tienen los datos tabulados se trata de analizarlos. Las gráficas permiten encontrar relaciones y tendencias de forma rápida, por simple inspección. Un gráfico está representado por: Los ejes cartesianos. En el eje de las X se representan los instantes, y en el eje Y la posición. El origen de referencias se sitúa en el origen (0,0). En el extremo de cada eje se indica la magnitud representada seguida de la unidad entre paréntesis. Si el movimiento es horizontal la posición se expresa con X; si es vertical con Y o h. La preparación de los datos consiste en: Expresar los datos con una unidad de medida adecuada (normalmente la del Sistema Internacional de Unidades) Simbolizar con la mayor precisión posible cada magnitud física. Observar el rango de valores que se van a manejar. Encabezar cada columna con un símbolo de la magnitud física seguida de la unidad. Cada tipo de movimiento tiene unas gráficas características que permite una clasificación visual del movimiento. Por ejemplo, las magnitudes que tengan un relación de proporcionalidad tendrán como representación gráfica una recta, cuya pendiente es la constante de proporcionalidad. Instante (s) Posición(m) to = 0 Xo = 3 t1 = 2 X1 = 9 t2 = 4 X2 = 27 t3 = 6 X3 = 71 t3 = 8 X4 = 99 FÍSICA Y QUÍMICA 15

16 Las representaciones gráficas más utilizadas entre magnitudes relacionadas con el movimiento son: MRUA Gráfica posición-instante MRU Gráfica posición-instante Gráfica velocidad-instante Gráfica velocidad-instante Gráfica aceleración - instante Gráfica aceleración-instante Observa: La distancia al observador (X o bien posición) es proporcional al tiempo transcurrido; La velocidad es una línea recta sin pendiente, es decir permanece constante en todo instante. La aceleración es una línea recta sobre el eje X, no hay aceleración. Observa: La distancia al observador (X o bien posición) es una parábola. La velocidad es una línea recta con pendiente. La velocidad y el tiempo transcurrido son directamente proporcionales. La aceleración es una línea recta sin pendiente. Es constante. 16 FÍSICA Y QUÍMICA

17 Si un movimiento transcurre en varias etapas, éstas pueden reflejarse en el gráfico posición-tiempo El movimiento rectilíneo tema posterior profundizaremos más sobre ello. Es el movimiento de ascenso igual de natural? En la primera etapa el móvil se aleja del sistema de referencia 1,7 km en 2 min, retrocede 0,6 km durante 5 min y se para 2 min para regresar al punto de partida en 1 min. En cada tramo la velocidad es constante y se puede determinar con los datos reflejados en la gráfica. La caída libre Es el movimiento natural más usual: dejas una pelota en el aire y adquiere "por sí sola" una velocidad que la lleva a precipitarse contra el suelo. A estas alturas de la unidad, se puede deducir con facilidad que al experimentarse un cambio de velocidad necesariamente es por la presencia de una aceleración. Observa la secuencia de fotogramas de un objeto que se ha dejado caer, encaja en algún tipo de los movimientos estudiados? Efectivamente, el objeto está acelerado uniformemente. Se corresponde con un movimiento rectilíneo uniformemente acelerado. La interacción entre la Tierra y el objeto provoca una aceleración, llamada aceleración de la gravedad, o simplemente gravedad, que para alturas no muy grandes se puede considerar constante e igual a -9,8 m/s 2. Su dirección es perpendicular a la superficie terrestre y el sentido hacia el centro de la Tierra. En un Efectivamente, la aceleración que actúa es la de la gravedad. Inicialmente se comunica una velocidad inicial v o que irá disminuyen por la acción de la gravedad, hasta que v=0 m/s e inicia el descenso, aumentado y tomando el valor inicial en el mismo punto desde que fue lanzado. En este tipo de movimientos, independientemente de si es ascenso o caída el sistema de referencia se sitúa en el suelo. Esta observación es relevante para determinar las condiciones iniciales y finales del movimiento. FÍSICA Y QUÍMICA 17

18 En el siguiente cuadro se resumen las características del movimiento de ascenso y descenso. calzada, no variando muchos de unos modelos de vehículos a otros. Situación Inicio Ascenso Altura máxima Regreso Características g=-9,8 m/s 2 v o >0 m/s y o =0 m t o =0 s g=-9,8 m/s 2 v=0 m/s y max t max g=-9,8 m/s 2 v<0 m/s y=0 m t=2t max El cálculo aproximado de la distancia de frenada, se realiza a partir de las ecuaciones del MRUA, X = X o+v o (t-t o)+1/2 a (t-t o) 2 y a = (v-v o)/(t-t o) se sustituye la aceleración estimada en la frenada, -6,2 = (0-v o)/t X = v o t-6.2/2 t 2 de ambas ecuaciones se desprende: X frenada = v o 2 /(2 6,2) Conducción responsable La velocidad de circulación de un vehículo o ciclomotor es uno de los factores que más influyen como causa de accidentes. Cuando se circula y se detecta un peligro la reacción más inmediata es frenar, cómo influye la velocidad de circulación en el tiempo necesario para detener el vehículo a tiempo?... En la siguiente imagen se observa la dependencia entre la velocidad de conducción y la distancia mínima para detenerse ante la reacción frente a un peligro. Tiempo de reacción El tiempo estimado de reacción del ser humano ante un peligro es de aproximadamente 3/4 de segundo. Durante ese intervalo de tiempo un vehículo recorre a una velocidad v, v 0.75 m. Cuanto mayor sea la velocidad con la que circula mayor espacio recorrerá antes de pisar el freno. Distancia de frenado La distancia de frenado es el espacio que recorre un vehículo hasta detenerse, desde que pisa el freno. La aceleración de frenado es de aproximadamente -6,2 m/s 2. Esta aceleración puede ser menor según las condiciones meteorológicas o el estado de la 18 FÍSICA Y QUÍMICA

19 EJERCICIOS RESUELTOS 3. Un pájaro realiza el vuelo descrito en esta imagen. Determina la ecuación de su movimiento. Un segundo pájaro situado a 10 m de él, espera 5 s desde que se inició el movimiento para alzar el vuelo. chocarán ambos? Solución: X = Xo v t t o ; Ecuación del movimiento x=2 t Al los 5 s el segundo pájaro alza el vuelo. El primer pájaro se encuentra en X =2 5=7 m por tanto como no ha llegado a los 10 m no se encontrará con el segundo pájaro. 4. Un bólido azul entra en el tramo recto de 14 km de un circuito autorizado de carreras, con una velocidad de 120 km/h manteniéndola constante todo el recorrido. A los 4 min de su entrada, llega un bólido rojo al mismo tramo. qué velocidad mínima debe llevar este último para llegar juntos a la meta? Solución: v a = /3600=33,3 m/ s ; Ecuación del movimiento X a =33,3 t Ecuación del movimiento del bólido rojo, X r =v r t A los 14 km el cronómetro marca, 14000=33,3 t ; t=14000/33,3=420 s. La velocidad del rojo debe ser, 14000=v r ; v r =14000 /180=77,7 m/ s, aproxidamente 280 km/h 5. Un móvil realiza un mrua tardando 0,75 s en aumentar la velocidad en 0,55 m/s. Qué aceleración posee? qué espacio recorrerá a los 60 s de iniciado el movimiento? Solución: a= v v f o t f t o = 0,55 0,75 =0,73 m/s2 ; e.recorrido= X f X o = 1 2 0, =1314m 6.Determina la velocidad del movimiento descrito en la gráfica de un movimiento rectilíneo posición frente a instantes Solución v= X X f o = 2 0 t f t o 4 0 =0,5m/ s 7.La gráfica representa el movimiento rectilíneo descrito por un objeto. Se divide en cuatro tramos A, B, C y D. Interpreta con un ejemplo real el movimiento. Determina la velocidad en el tramo donde se mueva más rápidamente. Cómo se interpreta el signo negativo de la velocidad? Solución: Un móvil se aleja de su posición 1,7 km durante 2 min. Retrocede 0,6 km durante 5 min, se para 2 min y termina por regresar, invirtiendo en todo ello 10 min. La recta de mayor pendiente es la D, v= X f X o t f t o = 0 1, = 18,3m/ s El signo negativo quiere decir que se dirige hacia los valores negativos del eje X. FÍSICA Y QUÍMICA 19

20 Para practicar 1. Un helicóptero es visualizado en la posición (7,6) a las 12:00 h. Dibuja su posición en el plano XY. 2. Cuál es la distancia que separa a un helicóptero de un observador situado en el origen del sistema de referencia si se encuentra en la posición (10,4). 3. Dibuja el desplazamiento realizado por un móvil que pasa de la posición (-1,-1) a la posición (0,2). 4. Una persona sale de su casa y camina en línea recta 5 m hacia la derecha, se para en una farola y gira 90º hacia la derecha caminando en línea recta 20 m. Dibuja la trayectoria, el desplazamiento total y calcula el espacio recorrido. 5. Expresa en la unidad fundamental del Sistema Internacional 120 km/h 6. Un coche circula por una carretera y en el instante t=0 s posee una velocidad de 40 km/h. Al cabo de 5 s posee una velocidad de 120 km/h. Finalmente transcurridos otros 5 s mantiene una velocidad de 40 km/h. Dibuja los vectores velocidad en cada etapa considerada. 7. Una bola de billar recorre 0,02 m en 0,10 s Con qué rapidez se ha desplazado? 8. Dos bolas de billar, azul y roja, se mueven al encuentro con una rapidez de 0,30 y 0,90 m/s respectivamente. Dibuja un esquema físico de la situación. 9. Un móvil posee en el instante t=0 s una velocidad de 20 m/s. Acelera de forma que al cabo de 1,0 s alcanza 60 m/s. a) Representa las velocidades, b) Calcula y representa la aceleración. 10. Cierta avioneta necesita alcanzar una velocidad de 220 km/h para despegar. Qué aceleración, supuesta constante, necesitan comunicar los motores para que despegue a los 4,8 s de iniciar la operación? 11. Un coche circula a una velocidad de 93 km/h y frena durante 3 s para tomar una curva a la velocidad más moderada de 77 km/h, inferior a los 80 km/h que recomienda la señal de tráfico. a) Qué aceleración comunicó?. Expresa el resultado en el SI. b) Haz un esquema de las magnitudes físicas implicadas en el instante de frenar. 12. Un caminante se dirige desde su casa al quiosco situado a 540 m, en la esquina de su calle, a las 12:00 h. Circula con una velocidad de 1,10 m/s. a) Determina su ecuación del movimiento. b) Habrá llegado al quiosco a las 12:14 h? 13. Un avión sobrevuela la ciudad de Madrid a 830 km/h, manteniendo constante la dirección y sentido hacia Alicante. La distancia entre estas dos ciudades es de 432 km. Qué tiempo tardará en sobrevolar Alicante? 14. Calcula la posición en la cual se cruzarán dos caminantes A y B separados una distancia de 70 m, sabiendo que se desplazan con una velocidad de 0,4 m/s y 0,5 m/s respectivamente. 15. Un caminante comienza a acercarse al quiosco de la esquina de una calle de 20 m. Va aumentado su velocidad a ritmo constante y al llegar es de 1,3 m/s. a) Qué aceleración ha experimentado? b) Determina la ecuación del movimiento. 16. Un avión comienza a rodar con una aceleración de 40 m/s 2 hasta alcanzar la velocidad de despegue de 600 km/ h. Calcula la longitud mínima que debe tener la pista de despegue. 17. a) Dibuja las gráficas posición y velocidad frente a instante, correspondiente a la caída de un objeto desde una torre de 95 m. b) Con qué velocidad alcanzará el suelo. 18. Calcula el espacio que recorre un coche que circula a 100 km/h hasta conseguir detenerse, desde que aparece un obstáculo en la carretera. Datos: tiempo de reacción aproximadamente 0,75 s, aceleración de frenado -6,2 m/s 2 Nota: Los ejercicios correspondientes a MRU apartados Gráficos, Etapas y dos móviles, y de MRUA Gráficos, no están incluidos en esta selección. 20 FÍSICA Y QUÍMICA

21 Para saber más Moviéndonos en la Historia El movimiento fue de los primeros fenómenos en ser directamente observados. Es quizá por ello que la mecánica (física del movimiento) es de las disciplinas científicas que más pronto se desarrollaron. En ello tuvieron mucho que ver personas con capacidad de asombro ante hechos cotidianos y voluntad para dar una explicación de los mismos. Aristóteles A Aristóteles (s. IV a. d. Cristo) se le conoce principalmente por ser, junto a Platón, los dos grandes filósofos griegos de la antigüedad cuyas ideas perduran hasta nuestros días. Entre las innumerables aportaciones de Aristóteles está el ser el padre de la Física como ciencia, no tanto por su contribución a su cuerpo de conocimientos como veremos, sino por atribuir a la experiencia un papel esencial en el acceso a cualquier tipo de conocimiento. El concepto de movimiento de Aristóteles es más amplio que el que se posee en la actualidad. Así los movimientos descritos en este tema estarían dentro de los movimientos accidentales locales que se caracterizan por un cambio de lugar. A su vez se pueden clasificar según la lógica aristotélica en: naturales que se producen por la propia esencia de las cosas, como por ejemplo los movimientos de caída libre que se han tratado, y violentos originados por causas artificiales como la acción de un motor. Resumiendo las ideas de Aristóteles sobre la caída de los objetos, éstas afirmaban que los cuerpos caen con una velocidad proporcional a su peso. Sin embargo esta afirmación es errónea y se sustentaba en una afirmación anterior según la cual el origen del movimiento está en la acción de una fuerza superior a la de una fuerza resistente que se ejerciese sobre el objeto. La velocidad que adquiere es directamente proporcional a ella e inversamente proporcional a la resistente. Pero este desacierto no impidió que produjera un cambio fundamental del pensamiento, restituyendo a la experiencia el papel fundamental que le corresponde en cualquier acercamiento al conocimiento. Galileo Galilei Los estudios sobre el movimiento se extendieron a lo largo del tiempo. En el medievo se tenía un amplio control del movimiento que describía un proyectil lanzado desde un cañón. Sin embargo se considera a Galileo Galilei (Pisa, Italia, finales del XVI y primera mitad del XVII) el padre de la cinemática o ciencia que estudia los movimientos sin atender a las causas que los provocan. Las relaciones matemáticas empleadas a lo largo de este tema tienen su origen en el trabajo de este matemático, físico y astrónomo, que aplicó por primera vez el método científico en sus investigaciones. Llevó el papel de la experiencia aristotélica al plano concreto de la experimentación como base del conocimiento científico. Utilizó aproximaciones idealizadas de la realidad para explicar aspectos parciales de ésta, en concreto estudió la caída natural de los objetos sobre planos inclinados extrapolando sus conclusiones a situaciones en ausencia de rozamiento (por ejemplo caída libre en el vacío, ausencia de aire). La principal conclusión sobre esto es la independencia de la velocidad que adquiere un objeto al caer con respecto a la masa que posee. El paso definitivo en la descripción de los movimientos cotidianos y sus causas no tardaría mucho en llegar de la mano de Sir Isaac Newton (mitad del s XVII y primera mitad del XVIII), reconociendo en su frase " Si consigo ver más lejos es porque he conseguido auparme a hombros de gigantes" la influencia de Aristóteles, Galileo y muchos otros en el desarrollo de lo que se ha denominado MECÁNICA CLÁSICA. Pero esto se verá en la tercera quincena... FÍSICA Y QUÍMICA 21

22 Recuerda lo más importante Sistema de Referencia SR Es el lugar desde donde se observa y se miden las posiciones que atraviesa un objeto en movimiento. Se expresa con unos ejes cartesianos XY y el observador en el origen de coordenadas. Trayectoria Es el camino imaginario trazado por un móvil al desplazarse, respecto de un sistema de referencia. Posición r Magnitud física con carácter de vector, expresada por las coordenadas (X,Y). Muestra la situación de un objeto respecto del origen de un Sistema de Referencia. Aceleración a Magnitud física con carácter de vector que representa la rapidez con que cambia la velocidad debido a alguna interacción (roce, motor ). Su unidad fundamental en el SI es el m/s 2. Signo: a>0 La interacción que origina la aceleración se dirige hacia el sentido positivo del eje. a<0 La interacción que origina la aceleración se dirige hacia el sentido negativo del eje. Relación matemática a=δv/δt* Válida para aceleración media y aceleración constante. MRU Movimiento de trayectoria rectilínea y velocidad constante tanto en módulo (rapidez) como en dirección. Ec. de movimiento X=Xo+vΔt Desplazamiento Δr Magnitud física con carácter vectorial que representa la distancia más corta entre dos posiciones. Si la trayectoria es recta su módulo representa el espacio recorrido entre dos instantes. MRUA Movimiento de trayectoria rectilínea con la velocidad variando uniformemente en rapidez y dirección constante. Ec. del movimiento X=Xo+voΔt+1/2 aδt 2 Velocidad v Magnitud física con carácter de vector que representa la rapidez con que se desplaza un objeto y qué dirección. Su unidad fundamental en el SI es el m/s. Signo: v>0 el móvil se desplaza hacia el sentido positivo del eje. v<0 el móvil se desplaza hacia el sentido negativo del eje. Relación matemática v=δx/δt * Válida para velocidad media y velocidad constante. Tiempo de reacción Intervalo de tiempo que tarda un conductor en reaccionar frente a un peligro. Distancia de frenado Es el espacio que recorre un vehículo desde que pisa el freno hasta que se detiene. La distancia total es la suma de ésta más la de reacción. 22 FÍSICA Y QUÍMICA

23 Autoevaluación 1. Señala V (verdadero) o F (falso) según consideres. La trayectoria es el desplazamiento de un móvil. La trayectoria es el camino trazado por un objeto en movimiento y varía según el SR. El desplazamiento es el espacio recorrido. El espacio recorrido es el módulo del desplazamiento en un MRU. La aceleración tangencial cambia la aceleración de un movimiento. Un MRU presenta dirección constante y módulo de v constante. La aceleración tangencial cambia el módulo de la velocidad. 2. Calcula el desplazamiento de un objeto que se mueve desde la posición (6,4) a la posición (1,-5). 3. Un caracol recorre 8 cm en línea recta en 13 s. A continuación gira 90º hacia la derecha recorriendo 18 cm en 14 s, Cuál ha sido la velocidad media de todo el recorrido? Resultado en cm/s. 4. Determina la ecuación del movimiento de un caminante que parte de la cima de una montaña y recorre en línea recta 9 km en 4,3 horas a ritmo constante. Qué velocidad de marcha llevó? 5. Determina gráficamente el instante y la posición en qué se cruzarán dos trenes A y B con MRU que parten de dos estaciones que distan 410 km. La velocidad de cada tren es respectivamente 110 km/h y -90 km/h. 6. Calcula el espacio que recorrerá un caminante que incrementa su velocidad en 0,10 m/s cada segundo durante 3,0 min. 7. Realiza la gráfica (t,v) que describe el despegue de un avión con unos motores que le comunican una aceleración de 32 m/s 2 durante 15 s. Con qué velocidad despegó? 8. Se lanza una pelota de tenis hacia arriba con una velocidad de 56 m/s, Qué altura alcanzará? Cuanto tiempo tardará en regresar al punto de partida? 9. Un conductor circula a 20 m/s, ve un obstáculo en la calzada, pisa el freno y transmite -6,8 m/s 2 de aceleración, Qué espacio recorrerá desde que pisa el freno hasta detenerse? Es el mínimo que necesita para parar? 10. Un agricultor deja caer una piedra a un pozo de profundidad 130 m. Qué tiempo transcurrirá hasta oír el sonido debido al impacto con el agua?. Datos: el sonido viaja a una velocidad constante de 340 m/s. FÍSICA Y QUÍMICA 23

24 Soluciones de los ejercicios para practicar 1. 9.a = 40 m/s 2 10.a = 12,7 m/s 2 11.a = -1,48 m/s 2 2.Distancia=10,8 m X = 1,1t. Si llega a las 12:08 h min. 14.a 31 m de la posición inicial de A 15.a) 0,04 m/s 2 b)x=0,02t 2 4. X=20,6 m, Espacio recorrido=25 m m velocidad =33,3 m/s 6. 7.velocidad =0,2 m/s 8. v=43 m/s 18.X1=20.83 m; X2=62,2 m Total =83,1 m Soluciones AUTOEVALUACIÓN 1. F;V:F;V;F;V;V m 3. 0,8 cm/s 4. X = 2t; 2,1 km/h 5. 2,05 s; 225,5,m de A m m m; 11,4 s 9. 29,4 m; 2,94 s. No, hay que añadir el espacio que se recorre en el tiempo de reacción. No olvides enviar las actividades al tutor 10. 5,53 s 24 FÍSICA Y QUÍMICA

25 ACTIVIDADES DE ESO Nombre y apellidos del alumno: Curso: 4º Quincena nº: 1 Fecha: Materia: Física y Química Profesor de la materia: 1.- Observa el siguiente gráfico que representa la posición de una bola de billar que rueda por el suelo con movimiento rectilíneo. Extrae de él la información solicitada. a) Posición inicial. b) Velocidad del tramo A. c) Velocidad del tramo B. d) Velocidad del tramo C. e) Espacio total recorrido. 2.- Dos trenes A y B atraviesan, en el mismo instante, dos estaciones A y B. El primero se dirige hacia la estación B y el segundo hacia la estación A. El tren A pasó por la estación A con una velocidad de 108 km/h y mantiene una aceleración de 0,02 m/s 2. El B marcha a la velocidad de -144 km/h. Al cabo de 10 min se cruzan en el camino. Qué distancia separa ambas estaciones? 3.- Se lanza verticalmente hacia arriba una pelota de tenis con una velocidad de 25 m/s. Determina la altura máxima que alcanza y el tiempo que tarda en volver al punto de partida. 4.- Un pájaro está inicialmente en la rama de un árbol cuya posición es (2,2), al sentir unos pasos, alza el vuelo y en 2 s se posa sobre otra rama situada en la posición (2,6). Qué desplazamiento realizó? Cuál fue la velocidad media del vuelo? C/. Torrelaguna, Madrid Tlf: Fax:

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

Movimiento Rectilíneo Uniforme

Movimiento Rectilíneo Uniforme Movimiento Rectilíneo Uniforme 1. Teoría La mecánica es la parte de la física encargada de estudiar el movimiento y el reposo de los cuerpos, haciendo un análisis de sus propiedades y causas. La mecánica

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

Tema 1. Movimiento de una Partícula

Tema 1. Movimiento de una Partícula Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento

Más detalles

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una

Más detalles

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo

Más detalles

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO:

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: Estes exercicios foron sacados de www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: 1- Define brevemente los siguientes conceptos: Posición. Trayectoria. Espacio recorrido. Desplazamiento Velocidad

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j. IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO CINEMATICA El objetivo de este tema es describir los movimientos utilizando un lenguaje científico preciso. En la primera actividad veremos qué magnitudes se necesitan introducir para lograr este objetivo.

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS La física es la más fundamental de las ciencias que tratan de estudiar la naturaleza. Esta ciencia estudia aspectos tan básicos como el movimiento,

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

1 EL MOVIMIENTO Y SU DESCRIPCIÓN

1 EL MOVIMIENTO Y SU DESCRIPCIÓN EL MOVIMIENTO Y SU DESCRIPCIÓN EJERCICIOS PROPUESTOS. De una persona que duerme se puede decir que está quieta o que se mueve a 06 560 km/h (aproximadamente la velocidad de la Tierra alrededor del Sol).

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

PRIMERA EVALUACIÓN. Física del Nivel Cero A

PRIMERA EVALUACIÓN. Física del Nivel Cero A PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple

Más detalles

Tema 4: Dinámica del movimiento circular

Tema 4: Dinámica del movimiento circular Tema 4: Dinámica del movimiento circular Ya has estudiado las características del movimiento circular uniforme, calculando la velocidad de giro, relacionándola con la lineal y teniendo en cuenta además

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo.

Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. 1. EL MOVIMIENTO Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. Por ejemplo: el coche que se mueve cambia de posición respecto a unos

Más detalles

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica?

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica? 4 año secundario Leyes de Newton Isaac newton (1642-1727), es considerado por los historiadores como un verdadero revolucionario en lo que se refriere a las ciencias y en particular a las ciencias naturales.

Más detalles

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO Estudiar el movimiento es importante: es el fenómeno más corriente y fácil de observar en la Naturaleza. Todo el Universo está en constante

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

FS-2 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Descripción del movimiento I

FS-2 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Descripción del movimiento I FS-2 Ciencias Plan Común Física 2009 Descripción del movimiento I Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas

Más detalles

Taller: Análisis gráfico de situaciones dinámicas. Por: Ricardo De la Garza González, MC.

Taller: Análisis gráfico de situaciones dinámicas. Por: Ricardo De la Garza González, MC. Taller: Análisis gráfico de situaciones dinámicas Por: Ricardo De la Garza González, MC. Agenda Introducción La ciencia escolar Enfoque epistémico Modelo de Giere Breve semblanza histórica del estudio

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA FÍSICA Y QUÍMICA Solucionario CINEMÁTICA 1.* Indicad qué tipo o tipos de movimiento corresponden a cada afirmación. a) MRU b) MRUA c) MCU d) Caída libre e) No hay movimiento 1.1. Una piedra lanzada desde

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica

Más detalles

Respuestas a las preguntas conceptuales.

Respuestas a las preguntas conceptuales. Respuestas a las preguntas conceptuales. 1. Respuesta: En general es más extensa la distancia recorrida. La distancia recorrida es una medición que pasa por todos los puntos de una trayectoria, sin embargo

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

1. CARACTERÍSTICAS DEL MOVIMIENTO.

1. CARACTERÍSTICAS DEL MOVIMIENTO. Tema 6. Cinemática. 1 Tema 6. CINEMÁTICA. 1. CARACTERÍSTICAS DEL MOVIMIENTO. 1.- Indica por qué un motorista que conduce una moto siente viento en su cara aunque el aire esté en calma. (2.R1) 2.- Se ha

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 Prueba de Acceso para Mayores de 25 años Para que un adulto mayor de 25 años pueda incorporarse plenamente en los estudios superiores de la Física

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad 14 1.- Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación

Más detalles

3 Estudio de diversos movimientos

3 Estudio de diversos movimientos 3 Estudio de diversos movimientos EJERCICIOS PROPUESTOS 3.1 Un excursionista, de pie ante una montaña, tarda 1,4 s en oír el eco de su voz. Sabiendo que el sonido viaja en el aire a velocidad constante

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO IAJANDO EN EL TELEFÉRICO EJERCICIO PRÁCTICO PARA APRENDER Y DIERTIRE CUADERNO DEL ALUMNO DECRIPCIÓN Un viaje tranquilo y sin sobresaltos de 2,4km de longitud a través del cielo de Madrid alcanzando una

Más detalles

Qué es una fuerza? Cómo se relaciona con el movimiento?

Qué es una fuerza? Cómo se relaciona con el movimiento? Qué es una fuerza? Cómo se relaciona con el movimiento? Prof. Bartolomé Yankovic Nola, 2012 1 Cuando pateamos una pelota o empujamos una mesa, podemos afirmar que se está ejerciendo o se ha ejercido una

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil

Más detalles

Otras tareas y actividades: Preguntas y problemas

Otras tareas y actividades: Preguntas y problemas FISICA MECANICA DOCUMENTO DE CONTENIDO TALLER DE EJERCICIOS LAPIZ Y PAPEL Otras tareas y actividades: Preguntas y problemas A continuación usted encontrara preguntas y problemas que debe resolver para

Más detalles

LANZAMIENTOS VERTICALES soluciones

LANZAMIENTOS VERTICALES soluciones LANZAMIENTOS VERTICALES soluciones 1.- Desde un puente se lanza una piedra con una velocidad inicial de 10 m/s y tarda 2 s en llegar al agua. Calcular la velocidad que lleva la piedra en el momento de

Más detalles

Para revisarlos ponga cuidado en los paréntesis. No se confunda.

Para revisarlos ponga cuidado en los paréntesis. No se confunda. Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene

Más detalles

2.3. ASPECTOS ENERGÉTICOS

2.3. ASPECTOS ENERGÉTICOS .3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS Un arquero dispara una flecha que produce un fuerte ruido al chocar contra el blanco. La velocidad media de la flecha es de 150 m/s. El arquero escucha

Más detalles

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 011 UNIVERSIDAD DE CASTILLA-LA MANCHA Apellidos Nombre DNI Centro Población Provincia Fecha Teléfonos (fijo y móvil) e-mail (en mayúsculas) PUNTUACIÓN Tómese

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. o ponga su nombre en ninguna de las hojas, escriba

Más detalles

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? 8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

Relación entre peso, masa y gravedad

Relación entre peso, masa y gravedad Relación entre peso, masa y gravedad Todo cae; las hojas de los árboles, un ladrillo, un lápiz y nos parece obvio. Pero fue Isaac Newton, allá por el siglo XVII que, probablemente observando cómo caía

Más detalles

LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces:

LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces: LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces: Rapidez promedio = distancia total recorrida = d Tiempo transcurrido t La dirección del

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

MOMENTO LINEAL OBJETIVOS

MOMENTO LINEAL OBJETIVOS MOMENTO LINEAL OBJETIVOS Comprender el significado físico de momento lineal o cantidad de movimiento como medida de la capacidad de un cuerpo de actuar sobre otros en choques. ( movimientos unidimensionales)

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA 1. Teorías y módulos. 2. Ley de gravitación universal de Newton. 3. El campo gravitatorio. 4. Energía potencial gravitatoria. 5. El potencial gravitatorio. 6. Movimientos de masas

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

Aplicación de los cálculos de velocidad a la reconstrucción de accidentes. El informe pericial. José Sánchez Martí

Aplicación de los cálculos de velocidad a la reconstrucción de accidentes. El informe pericial. José Sánchez Martí Aplicación de los cálculos de velocidad a la reconstrucción de accidentes. El informe pericial José Sánchez Martí Aplicación de los cálculos de velocidad a la reconstrucción de accidentes. El informe pericial

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

Profr. Efraín Soto Apolinar. Límites

Profr. Efraín Soto Apolinar. Límites Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial

Más detalles

LEYES DE LA DINÁMICA

LEYES DE LA DINÁMICA LEYES DE LA DINÁMICA Introducción. Se requiere una fuerza para que exista movimiento? Qué o quién mueve a los planetas en sus órbitas? Estas preguntas, que durante años se hizo el hombre, fueron contestadas

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

CORRIENTE ALTERNA. Fig.1 : Corriente continua

CORRIENTE ALTERNA. Fig.1 : Corriente continua CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles
Sitemap